Data-Driven Conditional Robust Optimization

Abhilash Chenreddy Nymisha Bandi Erick Delage
HEC Montréal, GERAD \& McGill University Montréal, Canada

Dipartimento di Elettronica Informazione e Bioingegneria Seminar March 4th, 2024

Motivating example

- Returns of different assets are unknown but may depend on historical returns, economic factors, investor sentiments via social media.
- Portfolio manager can formulate an allocation problem to minimize the value-at-risk (VaR) of the portfolio while preserving an expected return above a given target.

Bank stocks selloff resume

CUMULATIVE PRICE CHANGE SINCE MARCH 8

SOURCE: BLOOMBERG
FORTUNE

> Investor News
> @newsfilterio

Banks tumble as SVB ignites broader fears about the sector \$SIVB \$FRC \$ZION \$SI \$SBNY newsfilter.io/articles/banks...

12:41 PM • Mar 9, $2023 \cdot 938$ Views

What is contextual stochastic optimization?

- Optimization problems arising in practice almost always involve unknown parameters $\xi \in \mathbb{R}^{m_{\xi}}$
- Oftentimes, there is a relationship between unknown parameters and some contextual data $\psi \in \mathbb{R}^{m_{\psi}}$

What is contextual stochastic optimization?

- Optimization problems arising in practice almost always involve unknown parameters $\xi \in \mathbb{R}^{m_{\xi}}$
- Oftentimes, there is a relationship between unknown parameters and some contextual data $\psi \in \mathbb{R}^{m_{\psi}}$
- Contextual Optimization:
- Optimizes a policy, $\boldsymbol{x}: \mathbb{R}^{\boldsymbol{m}_{\psi}} \rightarrow \mathcal{X}$
- I.e., action $x \in \mathcal{X}$ is adapted to the observed context ψ
- Contextual Stochastic Optimization problem minimizes the expected cost of running the policy over the joint distribution of (ψ, ξ) :

$$
\min _{\boldsymbol{x}(\cdot)} \mathbb{E}[c(\boldsymbol{x}(\psi), \xi)] \Leftrightarrow \boldsymbol{x}^{*}(\psi) \in \underset{x \in \mathcal{X}}{\arg \min } \mathbb{E}[c(x, \xi) \mid \psi] \text { a.s. }
$$

What is conditional robust optimization?

- We introduce a novel Contextual Robust Optimization paradigm for solving contextual optimization problems in a risk-averse setting:

$$
\text { (Robust-CO) } \quad \min _{\boldsymbol{x}(\cdot)} \max _{\psi \in \mathcal{V}, \xi \in \mathcal{U}(\psi)} c(\boldsymbol{x}(\psi), \xi)
$$

where $\mathcal{U}(\psi)$ is a conditional uncertainty set designed to contain with high probability the realization of ξ conditionally on observing ψ.

What is conditional robust optimization?

- We introduce a novel Contextual Robust Optimization paradigm for solving contextual optimization problems in a risk-averse setting:

$$
\text { (Robust-CO) } \quad \min _{\boldsymbol{x}(\cdot)} \max _{\psi \in \mathcal{V}, \xi \in \mathcal{U}(\psi)} c(\boldsymbol{x}(\psi), \xi)
$$

where $\mathcal{U}(\psi)$ is a conditional uncertainty set designed to contain with high probability the realization of ξ conditionally on observing ψ.

- A weak interchangeability property states:

$$
\begin{aligned}
\boldsymbol{x}^{*}(\cdot) \in \underset{\boldsymbol{x}(\cdot)}{\arg \min } \max _{\psi \in \mathcal{V}, \xi \in \mathcal{U}(\psi)} c(\boldsymbol{x}(\psi), \xi) \\
\Leftarrow \boldsymbol{x}^{*}(\psi) \in \underbrace{\arg \min \max _{x \in \mathcal{X}} c(x \in \mathcal{U}(\psi)}_{\text {Conditional Robust Optimization (CRO) }} \mathrm{a}, \xi) \quad, \forall \psi \in \mathcal{V}
\end{aligned}
$$

Desirable coverage properties for $\mathcal{U}(\psi)$

The field of conformal prediction identifies two important properties for conditional uncertainty sets

- Marginal coverage property: $\mathbb{P}(\xi \in \mathcal{U}(\psi)) \geq 1-\epsilon$
- Conditional coverage property: $\mathbb{P}(\xi \in \mathcal{U}(\psi) \mid \psi) \geq 1-\epsilon$ a.s.
- Conditional coverage \Rightarrow Marginal coverage
E.g., target coverage $1-\epsilon=90 \%$:

Image from Angelopoulos and Bates, A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification, CoRR, 2021.

Related work in operations research literature

- Contextual Stochastic Optimization:
- Hannah et al. [2010], Bertsimas and Kallus [2020], ...: Conditional distribution estimation used to formulate and solve the CSO problem.
- Donti et al. [2017], Elmachtoub and Grigas [2022], ...: End-to-end paradigm applied to solve the data driven CSO problem.
- Distributionally Robust CSO:
- Bertsimas et al. [2022], McCord [2019], Wang and Jacquillat [2020], Kannan et al. [2020]: DRO approaches with ambiguity sets centered at the estimated conditional distribution
- Data-driven Robust Optimization:
- Goerigk and Kurtz [2023], Johnstone and Cox [2021]: learns a traditional "non-contextual" uncertainty set using deep learning, and conformal prediction.
- Ohmori [2021], Sun et al. [2023]: calibrates a box or ellipsoidal set to cover the realizations of a kNN -based or residual-based conditional distribution.
- Chenreddy et al. [2022] learns a contextual uncertainty set using an integrated clustering then classification approach

Presentation overview

(1) Introduction
(2) Deep Data-Driven Robust Optimization (DDDRO)
(3) Deep Cluster then Classify (DCC) Algorithms

4 Task-based CRO with Conditional Coverage
(5) Concluding Remarks

Outline

(1) Introduction
(2) Deep Data-Driven Robust Optimization (DDDRO)

(5) Concluding Remarks

Deep Data-Driven Robust Optimization (DDDRO)

- Classic non-contextual RO model is written as

$$
\min _{x \in \mathcal{X}} \max _{\xi \in \mathcal{U}} c(x, \xi)
$$

Deep Data-Driven Robust Optimization (DDDRO)

- Classic non-contextual RO model is written as

$$
\min _{x \in \mathcal{X}} \max _{\xi \in \mathcal{U}} c(x, \xi)
$$

- Goerigk and Kurtz [2023] describe the uncertainty set \mathcal{U} in the form,

$$
\mathcal{U}(W, R)=\left\{\xi \in \mathbb{R}^{m_{\xi}}:\left\|f_{W}(\xi)-\bar{f}_{0}\right\| \leq R\right\}
$$

where $f_{W}: \mathbb{R}^{m_{\xi}} \rightarrow \mathbb{R}^{d}$ is a deep neural network (DNN).

Deep Data-Driven Robust Optimization (DDDRO)

- Classic non-contextual RO model is written as

$$
\min _{x \in \mathcal{X}} \max _{\xi \in \mathcal{U}} c(x, \xi)
$$

- Goerigk and Kurtz [2023] describe the uncertainty set \mathcal{U} in the form,

$$
\mathcal{U}(W, R)=\left\{\xi \in \mathbb{R}^{m_{\xi}}:\left\|f_{W}(\xi)-\bar{f}_{0}\right\| \leq R\right\}
$$

where $f_{W}: \mathbb{R}^{m_{\xi}} \rightarrow \mathbb{R}^{d}$ is a deep neural network (DNN).

- Given a dataset $\mathcal{D}_{\xi}=\left\{\xi_{1}, \xi_{2} \ldots \xi_{N}\right\}, \mathcal{U}$ is designed by training a NN to minimize the one-class classification loss

$$
\min _{W} \frac{1}{N} \sum_{i=1}^{N}\left\|f_{W}\left(\xi_{i}\right)-\bar{f}_{0}\right\|^{2}
$$

where $\bar{f}_{0}:=(1 / N) \sum_{i \in[N]} f_{W_{0}}\left(\xi_{i}\right)$ and the radius R is calibrated for $1-\epsilon$ coverage on the data set.

Illustrative examples

Images from Goerigk and Kurtz. Data-driven robust optimization using deep neural networks. Computers and Operational Research, 151(C), 2023

Solving robust optimization with deep uncertainty sets

- When using piecewise affine activation functions, $\mathcal{U}(W, R)$ can be represented as:

$$
\mathcal{U}(W, R):=\left\{\begin{array}{c}
\exists u \in\{0,1\}^{d \times K \times L}, \zeta \in \mathbb{R}^{d \times L}, \phi \in \mathbb{R}^{d \times L} \\
\sum_{k=1}^{K} u_{j}^{k, \ell}=1, \forall j, \ell \\
\phi^{1}=W^{1} \xi \\
\xi
\end{array} \begin{array}{c}
\zeta_{j}^{\ell}=\sum_{k=1}^{K} u_{j}^{k, \ell} a_{k}^{\ell} \phi_{j}^{\ell}+\sum_{k=1}^{K} u_{j}^{k, \ell} b_{k}^{\ell}, \forall j, \ell \\
\phi^{\ell}=W^{\ell} \zeta^{\ell-1}, \forall \ell \geq 2 \\
\sum_{k=1}^{K} u_{j}^{k, \ell} \underline{\alpha}_{k}^{\ell} \leq \phi_{j}^{\ell} \leq \sum_{k=1}^{K} u_{j}^{k, \ell} \bar{\alpha}_{k}^{\ell}, \forall j, \ell \\
\left\|\zeta^{L}-\bar{f}_{0}\right\| \leq R
\end{array}\right\}
$$

- The problem $\max _{\xi \in \mathcal{U}(W, R)} c(x, \xi)$ can therefore be formulated as a mixed-integer second order cone program when $c(x, \xi)$ is linear.

Solving robust optimization with deep uncertainty sets

- When using piecewise affine activation functions, $\mathcal{U}(W, R)$ can be represented as:

$$
\mathcal{U}(W, R):=\left\{\begin{array}{c}
\exists u \in\{0,1\}^{d \times K \times L}, \zeta \in \mathbb{R}^{d \times L}, \phi \in \mathbb{R}^{d \times L} \\
\sum_{k=1}^{K} u_{j}^{k, \ell}=1, \forall j, \ell \\
\phi^{1}=W^{1} \xi \\
\xi
\end{array} \begin{array}{c}
\zeta_{j}^{\ell}=\sum_{k=1}^{K} u_{j}^{k, \ell} a_{k}^{\ell} \phi_{j}^{\ell}+\sum_{k=1}^{K} u_{j}^{k, \ell} b_{k}^{\ell}, \forall j, \ell \\
\phi^{\ell}=W^{\ell} \zeta^{\ell-1}, \forall \ell \geq 2 \\
\sum_{k=1}^{K} u_{j}^{k, \ell} \underline{\alpha}_{k}^{\ell} \leq \phi_{j}^{\ell} \leq \sum_{k=1}^{K} u_{j}^{k, \ell} \bar{\alpha}_{k}^{\ell}, \forall j, \ell \\
\left\|\zeta^{L}-\bar{f}_{0}\right\| \leq R
\end{array}\right\}
$$

- The problem $\max _{\xi \in \mathcal{U}(W, R)} c(x, \xi)$ can therefore be formulated as a mixed-integer second order cone program when $c(x, \xi)$ is linear.
- This can be integrated in a cutting plane method for solving the RO:

$$
\begin{gathered}
\min _{x \in \mathcal{X}, t} t \\
\text { subject to } c(x, \xi) \leq t, \forall \xi \in \mathcal{U}^{\prime} \subset \mathcal{U}(W, R)
\end{gathered}
$$

Outline

(1) Introduction

(2) Deep Data-Driven Robust Optimization (DDDRO)
(3) Deep Cluster then Classify (DCC) Algorithms
(4) Task-based CRO with Conditional Coverage

(5) Concluding Remarks

Deep Cluster then Classify (DCC)

- We use $\mathcal{D}:=\left\{\left(\psi_{1}, \xi_{1}\right), \ldots,\left(\psi_{N}, \xi_{N}\right)\right\}$ to design data-driven conditional uncertainty sets $\mathcal{U}(\psi)$.
- This approach reduces the side-information ψ to a set of K different clusters and designs customized sets, i.e., $\mathcal{U}(\psi):=\mathcal{U}_{a(\psi)}$
- $a: \mathbb{R}^{m_{\psi}} \rightarrow[K]$ is a trained K-class cluster assignment function
- Each \mathcal{U}_{k}, for $k=1, \ldots, K$, is an uncertainty sets for ξ calibrated on the dataset $\mathcal{D}_{\xi}^{k}:=\cup_{(\psi, \xi) \in \mathcal{D}: a(\psi)=k}\{\xi\}$ as in Goerigk and Kurtz [2023].

Deep clustering using auto-encoder/decoder networks

We use an auto-encoder and decoder network to identify $a(\cdot)$,

$$
\begin{aligned}
\mathcal{L}^{1}(V, \theta) & :=\frac{1-\alpha_{K}}{N} \sum_{i=1}^{N}\left\|g v_{D}\left(g v_{E}\left(\psi_{i}\right)\right)-\psi_{i}\right\|^{2} \\
& +\frac{\alpha_{K}}{N} \sum_{i=1}^{N}\left\|g V_{E}\left(\psi_{i}\right)-\theta^{a\left(\psi_{i}\right)}\right\|^{2},
\end{aligned}
$$

where

$$
a(\psi):=\underset{k \in[K]}{\operatorname{argmin}}\left\|g_{V_{E}}(\psi)-\theta^{k}\right\|
$$

image adapted from Fard et al. Deep k-means: Jointly clustering with k-means and learning representations. Pattern Recognition Letters, 138:185-192, 2020 parameters.

Integrated DCC addresses shortcoming of DCC

(1) DCC fails to tackle the conditional uncertainty set learning problem as a whole

- Solution: IDCC optimizes V_{E}, V_{D}, θ, and $\left\{W^{k}\right\}_{k=1}^{K}$ jointly using a loss function that trades-off between the objectives used for clustering and each of the K versions of one-class classifiers

Integrated DCC addresses shortcoming of DCC

(1) DCC fails to tackle the conditional uncertainty set learning problem as a whole

- Solution: IDCC optimizes V_{E}, V_{D}, θ, and $\left\{W^{k}\right\}_{k=1}^{K}$ jointly using a loss function that trades-off between the objectives used for clustering and each of the K versions of one-class classifiers
(2) DCC struggles for cases where clear separation of clusters isn't possible.
- Solution: IDCC trains a parameterized random assignment policy $\tilde{a}(\psi) \sim \pi(\psi)$:

$$
\mathbb{P}(\tilde{a}(\psi)=k)=\pi_{k}(\psi):=\frac{\exp \left\{-\beta\left\|g_{V}(\psi)-\theta^{k}\right\|^{2}\right\}}{\sum_{k^{\prime}=1}^{K} \exp \left\{-\beta \| g_{V}(\psi)-\theta^{\left.k^{\prime} \|^{2}\right\}}\right.}
$$

The random uncertainty set is $\tilde{\mathcal{U}}(\psi):=\mathcal{U}\left(W^{\tilde{a}(\psi)}, R^{\tilde{a}(\psi)}\right)$

Experiments

Robust portfolio optimization with market data

- Decision model:

$$
x^{*}(\psi):=\arg \min _{x: \sum_{i=1}^{n} x_{i}=1, x \geq 0} \max _{\xi \in \mathcal{U}(\psi)} \xi^{\top} x
$$

which captures the need to invest one unit of wealth among the available assets while minimizing risk exposure.

Experiments

Robust portfolio optimization with market data

- Decision model:

$$
x^{*}(\psi):=\arg \min _{x: \sum_{i=1}^{n} x_{i}=1, x \geq 0} \max _{\xi \in \mathcal{U}(\psi)} \xi^{\top} x
$$

which captures the need to invest one unit of wealth among the available assets while minimizing risk exposure.

- Contextual info: Trading volume, volatility index (VIX), 10-year treasury yield index (TNX), oil index (CLF), S\&P 500 (GSPC), gold price ($\mathrm{GC}=\mathrm{F}$), Dow Jones (DJI).

Experiments

Robust portfolio optimization with market data

- Decision model:

$$
x^{*}(\psi):=\arg \min _{x: \sum_{i=1}^{n} x_{i}=1, x \geq 0} \max _{\xi \in \mathcal{U}(\psi)} \xi^{\top} x
$$

which captures the need to invest one unit of wealth among the available assets while minimizing risk exposure.

- Contextual info: Trading volume, volatility index (VIX), 10-year treasury yield index (TNX), oil index (CLF), S\&P 500 (GSPC), gold price ($\mathrm{GC}=\mathrm{F}$), Dow Jones (DJI).
- Market data from Yahoo! Finance: 70 different stocks during period from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).

Experiments

Robust portfolio optimization with market data

- Decision model:

$$
x^{*}(\psi):=\arg \min _{x: \sum_{i=1}^{n} x_{i}=1, x \geq 0} \max _{\xi \in \mathcal{U}(\psi)} \xi^{\top} x
$$

which captures the need to invest one unit of wealth among the available assets while minimizing risk exposure.

- Contextual info: Trading volume, volatility index (VIX), 10-year treasury yield index (TNX), oil index (CLF), S\&P 500 (GSPC), gold price ($\mathrm{GC}=\mathrm{F}$), Dow Jones (DJ).
- Market data from Yahoo! Finance: 70 different stocks during period from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).
- Performance metric: out-of-sample VaR of $\xi^{T} x(\psi)$

Portfolio optimization: Comparison of avg. VaR across portfolio simulations

Outline

(1) Introduction
(2) Deep Data-Driven Robust Optimization (DDDRO)
(3) Deep Cluster then Classify (DCC) Algorithms
(4) Task-based CRO with Conditional Coverage

(5) Concluding Remarks

Task-based CRO

- The IDCC approach suffers from two issues:
(1) Training is done solely based on total variation measurements, disregarding entirely the out-of-sample performance of the solution obtained from robust optimization.

Task-based CRO

- The IDCC approach suffers from two issues:
(1) Training is done solely based on total variation measurements, disregarding entirely the out-of-sample performance of the solution obtained from robust optimization.
(2) While the calibration process encourages marginal coverage by making the coverage accurate for each cluster:

$$
\mathbb{P}(\xi \in \mathcal{U}(\psi) \mid \tilde{a}(\psi)=k) \geq 1-\epsilon \forall k \quad \Rightarrow \mathbb{P}(\xi \in \mathcal{U}(\psi)) \geq 1-\epsilon
$$

it does not promote conditional coverage over all ψ :

$$
\mathbb{P}(\xi \in \mathcal{U}(\psi) \mid \psi) \geq 1-\epsilon \text { a.s. }
$$

Task-based CRO

- The IDCC approach suffers from two issues:
(1) Training is done solely based on total variation measurements, disregarding entirely the out-of-sample performance of the solution obtained from robust optimization.
(2) While the calibration process encourages marginal coverage by making the coverage accurate for each cluster:

$$
\mathbb{P}(\xi \in \mathcal{U}(\psi) \mid \tilde{a}(\psi)=k) \geq 1-\epsilon \forall k \quad \Rightarrow \mathbb{P}(\xi \in \mathcal{U}(\psi)) \geq 1-\epsilon
$$

it does not promote conditional coverage over all ψ :

$$
\mathbb{P}(\xi \in \mathcal{U}(\psi) \mid \psi) \geq 1-\epsilon \text { a.s. }
$$

- In this next part, we propose Task-based Conditional Robust Optimization that promotes performance and conditional coverage.

Estimate-then-Optimize with continuous adaptation

- We consider a continuously adapted conditional ellipsoidal set:

$$
\mathcal{U}_{\theta}(\psi):=\left\{\xi \in \mathbb{R}^{m_{\xi}}:\left(\xi-\mu_{\theta}(\psi)\right)^{T} \Sigma_{\theta}^{-1}(\psi)\left(\xi-\mu_{\theta}(\psi)\right) \leq R_{\theta}\right\}
$$

Estimate-then-Optimize with continuous adaptation

- We consider a continuously adapted conditional ellipsoidal set:

$$
\mathcal{U}_{\theta}(\psi):=\left\{\xi \in \mathbb{R}^{m_{\xi}}:\left(\xi-\mu_{\theta}(\psi)\right)^{T} \Sigma_{\theta}^{-1}(\psi)\left(\xi-\mu_{\theta}(\psi)\right) \leq R_{\theta}\right\}
$$

- Given a data set $\mathcal{D}=\left\{\left(\psi_{1}, \xi_{1}\right),\left(\psi_{2}, \xi_{2}\right) \ldots\left(\psi_{N}, \xi_{N}\right)\right\}$, an estimate-then-optimize (ETO) approach takes the form:

where $\mathcal{L}_{\text {NLL }}^{\xi \mid \psi}$ is the negative log likelihood for a conditional Gaussian density estimator (see Barratt and Boyd [2021]):

$$
\xi \sim f_{\theta}(\psi):=\mathcal{N}\left(\mu_{\theta}(\psi), \Sigma_{\theta}(\psi)\right)
$$

and R_{θ} s.t. $\mathbb{P}_{\mathcal{D}}\left(\xi \in \mathcal{U}_{\theta}(\psi)\right)=1-\epsilon$

(Single) Task-based Set (TbS) training

A task-based approach learns the estimator by trying to minimize the decision loss, e.g. the portfolio risk based on VaR

Decision loss relaxation and derivatives

- Decision loss $\operatorname{VaR}_{\mathcal{D}}\left(c\left(x_{\theta}^{*}(\psi), \xi\right)\right)$ suffers from multiple local optima.

Figure 3: Simulation-based trade risk profile

Image from Mausser and Rosen, Beyond VaR: from measuring risk to managing risk, CIFEr, 1999.

Decision loss relaxation and derivatives

- Decision loss $\operatorname{VaR}_{\mathcal{D}}\left(c\left(x_{\theta}^{*}(\psi), \xi\right)\right)$ suffers from multiple local optima.

Figure 3: Simulation-based trade risk profile

Image from Mausser and Rosen, Beyond VaR: from measuring risk to managing risk, CIFEr, 1999.

- We therefore replace it with upper bound $\operatorname{CVaR}_{\mathcal{D}}\left(c\left(x_{\theta}^{*}(\psi), \xi\right)\right)$.

$$
\frac{\partial \mathrm{CVaR}_{i \sim N}\left(y_{i}\right)}{\partial y_{i}}=v_{i}(y) \text { with } \boldsymbol{v}(\boldsymbol{y}) \in \underset{\boldsymbol{v} \in \mathbb{R}_{+}^{M}: \pi^{T} \boldsymbol{v}=1, \boldsymbol{v} \leq((1-\alpha) N)^{-1}}{\operatorname{argmax}} \boldsymbol{v}^{T} \boldsymbol{y}
$$

Decision loss relaxation and derivatives

Robust optimization reformulation and derivatives

- We assume that $c(x, \xi)$ is convex in x and concave in ξ, while \mathcal{X} is a convex set.

Robust optimization reformulation and derivatives

- We assume that $c(x, \xi)$ is convex in x and concave in ξ, while \mathcal{X} is a convex set.
- Using Fenchel duality, one can follow Ben-Tal et al. [2015] to reformulate the robust optimization problem as:

$$
x_{\theta}^{*}(\psi):=\arg \min _{x \in \mathcal{X}} \max _{\xi \in \mathcal{U}_{\theta}(\psi)} c(x, \xi)=\arg \min _{v, x \in \mathcal{X}} \underbrace{\delta^{*}\left(v \mid \mathcal{U}_{\theta}(\psi)\right)-c_{*}(x, v)}_{f\left(x, v, \mathcal{U}_{\theta}(\psi)\right)}
$$

where the support function

$$
\delta^{*}\left(v \mid \mathcal{U}_{\theta}(\psi)\right):=\sup _{\xi \in \mathcal{U}_{\theta}(\psi)} \xi^{T} v=\mu^{T} v+\sqrt{v^{T} \Sigma^{-1} v}
$$

while the partial concave conjugate function is defined as

$$
c_{*}(x, v):=\inf _{\xi} v^{T} \xi-c(x, \xi)
$$

Robust optimization reformulation and derivatives

- We assume that $c(x, \xi)$ is convex in x and concave in ξ, while \mathcal{X} is a convex set.
- Using Fenchel duality, one can follow Ben-Tal et al. [2015] to reformulate the robust optimization problem as:

$$
x_{\theta}^{*}(\psi):=\arg \min _{x \in \mathcal{X}} \max _{\xi \in \mathcal{U}_{\theta}(\psi)} c(x, \xi)=\arg \min _{v, x \in \mathcal{X}} \underbrace{\delta^{*}\left(v \mid \mathcal{U}_{\theta}(\psi)\right)-c_{*}(x, v)}_{f\left(x, v, \mathcal{U}_{\theta}(\psi)\right)}
$$

- The derivatives of $x_{\theta}^{*}(\psi):=\arg \min _{v, x \in \mathcal{X}} f\left(x, v, \mathcal{U}_{\theta}(\psi)\right)$ w.r.t. θ can be obtained using implicit differentiation (see Blondel et al. [2022])

Robust optimization reformulation and derivatives

Second-task: Conditional coverage

Lemma

An uncertainty set $\mathcal{U}_{\theta}(\psi)$ has an a.s. conditional coverage of $1-\epsilon$ if and only if

$$
\mathcal{L}_{C \mathcal{}}(\theta):=\mathbb{E}\left[\left(\mathbb{P}\left(\xi \in \mathcal{U}_{\theta}(\psi) \mid \psi\right)-(1-\epsilon)\right)^{2}\right]=0
$$

Second-task: Conditional coverage

Lemma

An uncertainty set $\mathcal{U}_{\theta}(\psi)$ has an a.s. conditional coverage of $1-\epsilon$ if and only if

$$
\mathcal{L}_{C \mathcal{}}(\theta):=\mathbb{E}\left[\left(\mathbb{P}\left(\xi \in \mathcal{U}_{\theta}(\psi) \mid \psi\right)-(1-\epsilon)\right)^{2}\right]=0
$$

$\mathcal{L}_{\mathrm{CC}}(\theta)$ can be approximated using:

$$
\widehat{\mathcal{L}}_{\mathrm{CC}}(\theta):=\mathbb{E}_{\mathcal{D}}\left[\left(g_{\phi^{*}(\theta)}(\psi)-(1-\epsilon)\right)^{2}\right]
$$

where $g_{\phi^{*}(\theta)}(\psi) \approx \mathbb{P}\left(\xi \in \mathcal{U}_{\theta}(\psi) \mid \psi\right)$ is obtained using logistic regression of membership variable $y(\psi, \xi ; \theta):=\mathbb{1}\left\{\xi \in \mathcal{U}_{\theta}(\psi)\right\}$ on ψ.

Second-task: Conditional coverage

Lemma

An uncertainty set $\mathcal{U}_{\theta}(\psi)$ has an a.s. conditional coverage of $1-\epsilon$ if and only if

$$
\mathcal{L}_{C \mathcal{}}(\theta):=\mathbb{E}\left[\left(\mathbb{P}\left(\xi \in \mathcal{U}_{\theta}(\psi) \mid \psi\right)-(1-\epsilon)\right)^{2}\right]=0
$$

$\mathcal{L}_{\mathrm{CC}}(\theta)$ can be approximated using:

$$
\widehat{\mathcal{L}}_{\mathrm{CC}}(\theta):=\mathbb{E}_{\mathcal{D}}\left[\left(g_{\phi^{*}(\theta)}(\psi)-(1-\epsilon)\right)^{2}\right]
$$

where $g_{\phi^{*}(\theta)}(\psi) \approx \mathbb{P}\left(\xi \in \mathcal{U}_{\theta}(\psi) \mid \psi\right)$ is obtained using logistic regression of membership variable $y(\psi, \xi ; \theta):=\mathbb{1}\left\{\xi \in \mathcal{U}_{\theta}(\psi)\right\}$ on ψ.

- I.e., letting the augmented data set

$$
\mathcal{D}_{\psi \xi y}^{\theta}:=\left\{\left(\psi_{1}, \xi_{1}, y\left(\psi_{1}, \xi_{1} ; \theta\right)\right), \ldots,\left(\psi_{N}, \xi_{N}, y\left(\psi_{N}, \xi_{N} ; \theta\right)\right)\right\}
$$

one solves $\phi^{*}(\theta) \in \operatorname{argmin}_{\phi} \mathcal{L}_{N L L}^{y \mid \psi}\left(g_{\phi}(\cdot), \mathcal{D}_{\psi \xi y}^{\theta}\right)$ with

$$
g_{\phi}(\psi):=\frac{1}{1+\exp ^{\phi^{\top}} \psi+\phi_{0}}
$$

Double Task-based Set (DTbS) training

We train $\mathcal{U}_{\theta}(\psi)$ using the two tasks: produce good decision + produce good conditional coverage:

Comparative study with GMM environment

- $(\psi, \xi) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ drawn from a joint Gaussian mixture model with two modes
- Data: 600 points for training, 400 for validation, 1000 for test
- Targeted confidence level of 90%
- Average is calculated over 10 runs

Comparative study with GMM environment

- $(\psi, \xi) \in \mathbb{R}^{2} \times \mathbb{R}^{2}$ drawn from a joint Gaussian mixture model with two modes
- Data: 600 points for training, 400 for validation, 1000 for test
- Targeted confidence level of 90%
- Average is calculated over 10 runs

	ETO-ACPS	ETO-DbS	TbS	DTbS
Avg. CVaR	1.88 ± 0.09	1.66 ± 0.11	$\mathbf{1 . 3 8} \pm 0.03$	$\mathbf{1 . 3 2} \pm 0.05$
Avg. VaR	1.24 ± 0.06	1.01 ± 0.06	$\mathbf{0 . 8 9} \pm 0.02$	$\mathbf{0 . 8 5} \pm 0.04$
Avg. marginal cov.	$\mathbf{9 0} \% \pm 2 \%$	$95 \% \pm 4 \%$	$52 \% \pm 10 \%$	$92 \% \pm 1 \%$

Comparative study with GMM environment

Portfolio optimization with market data

- Contextual info: Trading volume, volatility index (VIX), 10-year treasury yield index (TNX), oil index (CLF), S\&P 500 (GSPC), gold price ($\mathrm{GC}=\mathrm{F}$), Dow Jones (DJ).
- Market data from Yahoo! Finance: 70 different stocks during period from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).
- Target confidence level of $70 \%, 80 \%$, or 90%

		Marginal coverage						
		2018			2019			
	70%	80%	90%	70%	80%	90%		
ETO-ACPS	68%	78%	87%	71%	78%	89%		
ETO-DbS	59%	75%	87%	61%	76%	86%		
TbS	23%	24%	29%	26%	30%	32%		
DTbS	71%	80%	93%	69%	78%	92%		

Portfolio optimization with market data

- Contextual info: Trading volume, volatility index (VIX), 10-year treasury yield index (TNX), oil index (CLF), S\&P 500 (GSPC), gold price ($\mathrm{GC}=\mathrm{F}$), Dow Jones (DJI).
- Market data from Yahoo! Finance: 70 different stocks during period from 01/01/2012 to 31/12/2019 (2017-2019 reserved for test).

(a) 2018
- ETO-ACPS

(b) 2019

DTbS

Outline

(1) Introduction

(2) Deep Data-Driven Robust Optimization (DDDRO)
(3) Deep Cluster then Classify (DCC) Algorithms
(4) Task-based CRO with Conditional Coverage
(5) Concluding Remarks

Concluding remarks

- We introduced a new contextual robust optimization approach for solving risk averse contextual optimization problems.
- In CRO, deep neural networks can be used to:
- Represent richly structured uncertainty sets, e.g. DDDRO, IDCC
- Adapt uncertainty set continuously to covariates, e.g. ETO-ACPS,..., DTbS.
- Two types of training procedures: "Estimate-then-optimize" vs. "Task-based"
- Two types of training objectives:
- Decision performance: Producing decisions that achieve low VaR/CVaR
- Statistical performance: achieving the right marginal/conditional coverage

Thank you

Bibliography I

Anastasios N. Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and distribution-free uncertainty quantification, 2022.
Shane Barratt and Stephen Boyd. Covariance prediction via convex optimization, 2021.
Aharon Ben-Tal, Dick Hertog, and Jean-Philippe Vial. Deriving robust counterparts of nonlinear uncertain inequalities. Math. Program., 149(1-2):265-299, feb 2015.
Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. Management Science, 66(3):1025-1044, 2020.
Dimitris Bertsimas, Christopher McCord, and Bradley Sturt. Dynamic optimization with side information. European Journal of Operational Research, 2022.
Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. Advances in neural information processing systems, 35:5230-5242, 2022.
Abhilash Reddy Chenreddy, Nymisha Bandi, and Erick Delage. Data-driven conditional robust optimization. In Advances in Neural Information Processing Systems, volume 35, pages 9525-9537, 2022.
Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic optimization. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
Adam N Elmachtoub and Paul Grigas. Smart "predict, then optimize". Management Science, 68 (1):9-26, 2022.

Bibliography II

Marc Goerigk and Jannis Kurtz. Data-driven robust optimization using deep neural networks. Computers and Operational Research, 151(C), 2023.
Lauren Hannah, Warren Powell, and David Blei. Nonparametric density estimation for stochastic optimization with an observable state variable. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc., 2010.
Chancellor Johnstone and Bruce Cox. Conformal uncertainty sets for robust optimization, 2021.
Rohit Kannan, Güzin Bayraksan, and James R Luedtke. Residuals-based distributionally robust optimization with covariate information. arXiv preprint arXiv:2012.01088, 2020.
Christopher George McCord. Data-driven dynamic optimization with auxiliary covariates. PhD thesis, Massachusetts Institute of Technology, 2019.
Shunichi Ohmori. A predictive prescription using minimum volume k-nearest neighbor enclosing ellipsoid and robust optimization. Mathematics, 9(2):119, 2021.
Chunlin Sun, Linyu Liu, and Xiaocheng Li. Predict-then-calibrate: A new perspective of robust contextual lp, 2023.

Kai Wang and Alex Jacquillat. From classification to optimization: A scenario-based robust optimization approach. Available at SSRN 3734002, 2020.

