
Chapter 4:
Adjustable Robust Linear Programming



Why we need adjustable 
robust models? 



Why worry about decision 
sequences?

• Consider a simple inventory management problem : 
 
 
 
 
 
 
 
xt : the amount ordered for time t 
yt : the amount in inventory at beginning of t 
dt : the demand at time t 
a : the initial inventory

A simple inventory problem

Consider the following inventory management problem:

minimize
x,y

Tÿ

t“1

¨

˚̋
ordering costhkkikkj

ctxt `
holding costhkkkkkikkkkkj
htpyt`1q` `

backlog costhkkkkkkikkkkkkj
btp´yt`1q`

˛

‹‚

s.t. yt`1 “ yt ` xt ´ dt, @ t, (Stock balance)

0 § xt § Mt, @ t, (Min/max order size)

y1 “ a , (Initial stock level)

where

xt is number of goods ordered at time t and received at t ` 1

yt is number of goods in stock at beginning of time t

dt is demand between time t and t ` 1

a is the initial inventory
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A linear programming 
reformulation

• This is the linearized version of the inventory model: 
 
 
 
 
 
 
 
 
 

A linear programming formulation

This problem can be reformulated using the linear program

minimize
x,y,s`,s´

Tÿ

t“1

`
ctxt ` hts

`
t

` bts
´
t

˘

s.t. s`
t

• 0, s´
t

• 0 , @ t,

s`
t

• yt`1 , @ t,

s´
t

• ´yt`1 , @ t,

yt`1 “ yt ` xt ´ dt , @ t,

0 § xt § Mt , @ t,

How can we make this model robust to demand perturbations?
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Naïve robustification
• Given that the vector of demand d is assumed to lie in some 

uncertainty set U, let’s consider the robust optimization model:  
 
 
 
 
 
 
 
 
 

• Unfortunately, this makes the model infeasible even when |U| = 2:  
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Unfortunately, this makes the model infeasible even when |U| “ 2:
#

yt`1 “ yt ` xt ´ d
p1q
t

yt`1 “ yt ` xt ´ d
p2q
t

+

ñ d
p1q
t

“ d
p2q
t
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A less naïve robustification
• Robustify an alternate linear programming reformulation: 

 
 
 
 
 
 
 
 
 
 
 
where we simply replaced       
in order to capture the fact that stock level evolves according to 
demand. 

A less näıve robustification

Robustify an alternate linear programming formulation:

minimize
x,s`,s´

Tÿ

t“1

`
ctxt ` hts

`
t

` bts
´
t

˘

s.t. s`
t

• 0, s´
t

• 0, @t,

s`
t

• y1 `
tÿ

t 1“1

xt 1 ´ dt 1 , @t,

s´
t

• ´y1 `
tÿ

t 1“1

dt 1 ´ xt 1 , @t,

0 § xt § Mt @t ,

where we simply replaced yt`1 :“ y1 ` ∞
t

t 1“1 xt 1 ´ dt 1 in order to capture
the fact that stock level evolves according to demand.
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• Robustify an alternate linear programming reformulation: 
 
 
 
 
 
 
 
 
 
 
 
 
 

A less naïve robustificationA less näıve robustification
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Still two issues remain:
1 the orders should be adjustable w.r.t. the observed demand

2 ps`
t
, s´

t
q should be fully adjustable (more subtle)
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Why (s+,s-) should be fully 
adjustable

• Consider the two-stage problem with                    : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Why ps`
t , s

´
t q should be fully adjustable

Consider the two-stage problem:

Deterministic model:

min.
x1

orderinghkkikkj
0.5x1 `

holdinghkkkkkikkkkkj
px1 ´ d1q`

` pd1 ´ x1q`
looooomooooon

backlog

s.t. 0 § x1 § 2 ,

Less näıve robust model:

min.
x1

0.5x1 ` x1loomoon
s`˚
1

` 2 ´ x1loomoon
s´˚
1

s.t. 0 § x1 § 2 .

Conclusions:

Less näıve robust model states x˚
1 :“ 0, s`˚

1 :“ 0, and s´˚
1 :“ 2 with

worst-case cost of 2

Alternatively, x˚˚
1 :“ 1 achieves a total cost lower than 1.5 for all

d1 P r0, 2s
11 / 44

d1 2 [0, 2]

Deterministic model:
min

x1,s
+
1 ,s�1

0.5x1 + s+1 + s�1

s.t. s+1 � 0 , s�1 � 0

s+1 � x1 � d1 , 8 d1 2 [0, 2]

s�1 � d1 � x1 , 8 d1 2 [0, 2]

0  x1  2

Less naïve model:          
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An accurate two-stage 
robust inventory model 

• The robust two-stage problem actually takes the form:  
 
 
 
 
where 
 
 
 
 
 
 

An accurate two-stage robust inventory model

The robust two-stage problem actually takes the form:

minimize
x1

sup
d1Pr0,2s

0.5x1 ` hpx1,d1q

s.t. 0 § x1 § 2 ,

where

hpx1,d1q :“ min
s

`
1 ,s´

1

s`
1 ` s´

1

s.t. s`
1 • 0, s´

1 • 0

s`
1 • x1 ´ d1

s´
1 • ´x1 ` d1 .

Note how this form accounts for the fact that s`
1 and s´

1 might
jointly depend on the realized value of d1.
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Timing characterized by accurate robust model



Alternate representation of 
less naïve robust model 

• Comparatively, the less naïve robust model was solving:  
 
 
 
 
where 
 
 
 
 

Alternate representation of less näıve robust model

Comparatively, the less näıve robust model was solving:

minimize
x1,s

`
1 ,s´

1

sup
d1Pr0,2s

0.5x1 ` gpx1, s`
1 , s

´
1 ,d1q

s.t. s`
1 • 0, s´

1 • 0

0 § x1 § 2 ,

where

gpx1, s`
1 , s

´
1 ,d1q :“

"
s`
1 ` s´

1 if s`
1 • x1 ´ d1 and s´

1 • d1 ´ x1
8 otherwise

.

Timing characterized by less näıve robust model
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Timing characterized by less naïve robust model



Takeaway message about 
adjustable decisions 

When robustifying decision models that either involve 

• “implementable” decisions at different time periods 

• “auxiliary” decisions such as s+, s- that are used to assess overall 
performance of implemented decisions  

one needs to carefully identify the chronology of decisions and 
observations and employ the adjustable robust counterpart framework 
introduced in (Ben-Tal et al., 2004) 

Takeaway message about adjustable decisions

When robustifying decision models that either involve

“implementable” decisions at di↵erent time periods (e.g. xt)

“auxiliary” decisions such as ps`
t
, s´

t
q that are used to assess overall

performance of implemented decisions

one needs to carefully identify the chronology of decisions and observations
and employ the adjustable robust counterpart framework introduced in
(Ben-Tal et al., 2004)

Accurate timing of decisions and observations in inventory problem

x1 d[1] x2 d[2] d[T]
s+

1:T, 
s-

1:T

Auxiliary decisionsImplementable decisions
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We propose a general methodology based on robust optimization to address the problem of optimally controlling a supply
chain subject to stochastic demand in discrete time. This problem has been studied in the past using dynamic programming,
which suffers from dimensionality problems and assumes full knowledge of the demand distribution. The proposed approach
takes into account the uncertainty of the demand in the supply chain without assuming a specific distribution, while
remaining highly tractable and providing insight into the corresponding optimal policy. It also allows adjustment of the
level of robustness of the solution to trade off performance and protection against uncertainty. An attractive feature of
the proposed approach is its numerical tractability, especially when compared to multidimensional dynamic programming
problems in complex supply chains, as the robust problem is of the same difficulty as the nominal problem, that is, a
linear programming problem when there are no fixed costs, and a mixed-integer programming problem when fixed costs
are present. Furthermore, we show that the optimal policy obtained in the robust approach is identical to the optimal policy
obtained in the nominal case for a modified and explicitly computable demand sequence. In this way, we show that the
structure of the optimal robust policy is of the same base-stock character as the optimal stochastic policy for a wide range
of inventory problems in single installations, series systems, and general supply chains. Preliminary computational results
are very promising.
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1. Introduction
Optimal supply chain management has been extensively
studied in the past with much theoretical success. Dynamic
programming has long emerged as the standard tool for
this purpose, and has led to significant breakthroughs as
early as 1960, when Clark and Scarf (1960) proved the
optimality of base-stock policies for series systems in their
landmark paper. Although dynamic programming is a pow-
erful technique as to the theoretical characterization of
the optimal policy for simple systems, the complexity of
the underlying recursive equations over a growing num-
ber of state variables makes it ill suited for the com-
putation of the actual policy parameters, which is cru-
cial for real-life applications. Approximation algorithms
have been developed to address those issues. These include
stochastic approximation (see Koshner and Clark 1978)
and infinitesimal perturbation analysis (IPA) (see Glasser-
man 1991, Ho and Cao 1991), where a class of policies,
e.g., base-stock, characterized by a set of parameters, is
optimized using simulation-based methods (see Fu 1994,
Glasserman and Tayur 1995, Kapuscinski and Tayur 1999).
IPA-based methods assume knowledge of the underlying
probability distributions and restrict their attention to cer-

tain classes of policies that might be suboptimal for a gen-
eral network problem. Another technique that has gained
popularity in recent years is approximate dynamic program-
ming, described by Bertsekas and Tsitsiklis (1996). Despite
their promising potential, these methods remain hard to
implement in practice. As a result, for implementation pur-
poses, preference is given to more intuitive policies that are
much easier to compute, but also suboptimal.
Zipkin (2000) describes policies widely used in prac-

tice, such as the economic-order-quantity model, where the
demand is constant over time, and the dynamic-economic-
lotsize model, which incorporates time-varying demands,
for single installations. In both cases, the demand is consid-
ered to be without any uncertainty. Myopic policies, which
minimize the cost solely at the current time period, are also
often used as a substitute for the optimal policy obtained
by dynamic programming. For supply chains more com-
plex than series systems, what is commonly referred to as
“the curse of dimensionality” plagues even the theoreti-
cal use of dynamic programming to find the structure of
the optimal policy, thus making it necessary to resort to
approximations.
Dynamic programming also assumes full knowledge of

the underlying distributions, which further limits its prac-
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equation:

xk+1 = xk + uk −wk! k= 0! " " " !T − 1! (5)

leading to the closed-form expression

xk+1 = x0 +
k
∑

i=0

#ui −wi$! k= 0! " " " !T − 1" (6)

Neither the stock available nor the quantity ordered at
each period is subject to upper bounds. Section 3.2 deals
with the capacitated case.
The demands wk are random variables. To apply the

approach outlined in §2, we model wk for each k as
an uncertain parameter that takes values in %"wk − #wk!
"wk + #wk&. We define the scaled deviation of wk from its
nominal value to be zk = #wk − "wk$/#wk, which takes val-
ues in %−1!1&. We impose budgets of uncertainty at each
time period k for the scaled deviations up to time k. Hence,
we now have the constraint

∑k
i=0 $zi$! 'k for all time peri-

ods k= 0! " " " !T − 1. These budgets of uncertainty rule out
large deviations in the cumulative demand, and as a result
the robust methodology can be understood as a “reasonable
worst-case” approach. The main assumption we make on 'k
is that they are increasing in k, i.e., we feel that uncertainty
increases with the number of time periods considered. We
also constrain 'k to be increasing by at most 1 at each
time period, i.e., the increase of the budgets of uncertainty
should not exceed the number of new parameters added at
each time period.
Finally, we specify the cost function. The cost incurred

at period k consists of two parts: a purchasing cost, C#uk$,
and a holding/shortage cost resulting from this order,
R#xk + uk − wk$, which is computed at the end of the
period, after the shipment uk has been received and the
demand wk has been realized. Here, we consider a purchas-
ing cost of the form

C#u$=







K+ c · u if u> 0!

0 if u= 0!
(7)

with c > 0 the unit variable cost and K " 0 the fixed cost.
If K > 0, a fixed positive cost is incurred whenever an order
is made. The holding/shortage cost represents the cost asso-
ciated with having either excess inventory (positive stock)
or unfilled demand (negative stock). We consider a convex,
piecewise linear holding/shortage cost

R#x$=max#hx!−px$! (8)

where h and p are nonnegative. We assume that p > c,
so that ordering stock remains a possibility up to the last
period.
Using the piecewise linearity and convexity of the hold-

ing/shortage cost function, and modelling the fixed order-
ing cost with binary variables, the inventory problem we

consider can be written as a mixed-integer programming
problem:

minimize
T−1
∑

k=0

#cuk +Kvk + yk$ (9)

subject to

yk " h

(

x0 +
k
∑

i=0

#ui −wi$

)

! k= 0! " " " !T − 1! (10)

yk "−p

(

x0 +
k
∑

i=0

#ui −wi$

)

! k= 0! " " " !T − 1! (11)

0! uk !Mvk! vk ∈ (0!1)! k= 0! " " " !T − 1! (12)

where wi = "wi + #wi · zi such that z ∈! = ($zi$! 1 ∀ i" 0!
∑k

i=0 $zi$! 'k ∀k" 0).
Data uncertainty now only affects the first two con-

straints of the mixed-integer programming problem. We
isolate the effect of the uncertainty on the stock level
by writing xk+1 under the form xk+1 = 'xk+1 +

∑k
i=0 #wizi,

where 'xk+1 is the inventory we would have by ordering the
same quantities if there was no uncertainty on the demand,
that is, 'xk+1 = x0 +

∑k
i=0#ui − "wi$ for all k. Following the

technique developed in §2, the robust approach consists
here of maximizing the right-hand side of the constraints
over the set of admissible scaled deviations. For the kth pair
of holding/shortage constraints, this amounts to solving the
auxiliary linear programming problem:

maximize
k
∑

i=0

#wizi

subject to
k
∑

i=0

zi ! 'k!

0! zi ! 1 ∀ i"

(13)

Remarks. 1. This auxiliary problem arises from minimiz-
ing

∑k
i=0 #wizi in the holding constraint (10) and maximizing

∑k
i=0 #wizi in the shortage constraint (11) over !, which is

symmetric in zi. As a result, the optimal zi in %−1!1&,
i= 0! " " " !k, obtained in both cases are the opposite of each
other and there is no feasible demand in the uncertain set
that realizes both constraints of each pair.
2. This also illustrates why we allot thresholds to

∑k
i=0 zi

for all time periods k = 0! " " " !T − 1. If we only had a
global threshold on

∑T−1
i=0 zi, we would maximize

∑k
i=0 #wizi

over 0! zi ! 1 for all i and
∑T−1

i=0 zi ! ' . As a result, for
all k such that k! ('), we would have at optimality zi = 1
for i ! k, which is equivalent to taking all the wi in the
early time periods equal to their worst-case value. The early
time periods would then be overprotected.
3. The robust methodology does not depend on 'xk,

k" 0. Therefore, it can readily be extended to arbitrary
constant lead times L, with 'xk+1 = x0 +

∑k−L
i=0 ui −

∑k
i=0 "wi

for all k.
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0! uk !Mvk! vk ∈ (0!1)! k= 0! " " " !T − 1! (12)

where wi = "wi + #wi · zi such that z ∈! = ($zi$! 1 ∀ i" 0!
∑k

i=0 $zi$! 'k ∀k" 0).
Data uncertainty now only affects the first two con-

straints of the mixed-integer programming problem. We
isolate the effect of the uncertainty on the stock level
by writing xk+1 under the form xk+1 = 'xk+1 +

∑k
i=0 #wizi,

where 'xk+1 is the inventory we would have by ordering the
same quantities if there was no uncertainty on the demand,
that is, 'xk+1 = x0 +

∑k
i=0#ui − "wi$ for all k. Following the

technique developed in §2, the robust approach consists
here of maximizing the right-hand side of the constraints
over the set of admissible scaled deviations. For the kth pair
of holding/shortage constraints, this amounts to solving the
auxiliary linear programming problem:

maximize
k
∑

i=0

#wizi

subject to
k
∑

i=0

zi ! 'k!

0! zi ! 1 ∀ i"

(13)

Remarks. 1. This auxiliary problem arises from minimiz-
ing

∑k
i=0 #wizi in the holding constraint (10) and maximizing

∑k
i=0 #wizi in the shortage constraint (11) over !, which is

symmetric in zi. As a result, the optimal zi in %−1!1&,
i= 0! " " " !k, obtained in both cases are the opposite of each
other and there is no feasible demand in the uncertain set
that realizes both constraints of each pair.
2. This also illustrates why we allot thresholds to

∑k
i=0 zi

for all time periods k = 0! " " " !T − 1. If we only had a
global threshold on

∑T−1
i=0 zi, we would maximize

∑k
i=0 #wizi

over 0! zi ! 1 for all i and
∑T−1

i=0 zi ! ' . As a result, for
all k such that k! ('), we would have at optimality zi = 1
for i ! k, which is equivalent to taking all the wi in the
early time periods equal to their worst-case value. The early
time periods would then be overprotected.
3. The robust methodology does not depend on 'xk,

k" 0. Therefore, it can readily be extended to arbitrary
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∑k−L
i=0 ui −

∑k
i=0 "wi

for all k.
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Identifying the chronology of 
execution and observation

• Here is how we will identify the chronology: 
 
 
 
 
xt : the decision implemented at time t 
z : the underlying uncertainty about the whole future 
vt(z): function that returns what was observed of z at time 
t (i.e. the « visual evidence » at time t) 
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Note that in this linearized formulation the s
+
1 and s

�
1 are allowed to depend on the instance

of d1 that is studied. Namely, with x
⇤⇤
1 = 1 they will take the values s

+
1 (d1) := (1 � d1)+ and

s
�
1 (d1) := (d1 � 1)+. This is unlike the optimization problem (4.2) which proposed x

⇤
1 = 0

and where the choice of s
+
1 and s

�
1 needed to be fixed once before the realization of d1 was

known.

Conclusion: When robustifying a linear program that involves either decisions that are
implemented (i.e. turned into an action) at di↵erent point of time (as xt), or decision variables
(called auxiliary decision variables) which only role in the mathematical program is to allow
the computation of the objective value or the validation of a constraint (as s

+
t and s

�
t ), one

must carefully identify the chronology of decisions and observations sequence and employ the
adjustable robust counterpart framework. In particular, it is typically the case that auxiliary
decision variables can be adjusted to the whole vector of uncertain parameters z.

4.2 The Adjustable Robust Counterpart Model

As seen in the above inventory problem, it is important before developing a robust optimiza-
tion model to clearly layout the chronology of executions and observations as portrayed in
the following diagram.

Chronology of executions xi’s, observations vi’s, and z

x1 v2(z) x2 v3(z) vT(z) xT z

Note that in the above diagram, we represent decisions executed at time t as xt, while
observations made between time t � 1 and t is represented by vt (for “visual” evidence).
The observation vt is a function of z the underlying uncertainty that a↵ects the decision
problem as a whole. Finally, after the final decision is implemented, one can observe the
realized uncertain vector z in its entirety in order to evaluate the objective function and
assess whether all the constraint were met.

To be precise, while when there is no uncertainty a sequential decision problem might be
easily described as

maximize
{xt}Tt=1

TX

t=1

c
T
t xt + d

subject to
TX

t=1

a
T
jtxt  bj , 8 j = 1, . . . , J,

where each xt 2 Rn (without loss of generality), the situation is more complicated whens
uncertainty is inserted. Instead, one must consider the following robust formulation

(ARC) maximize
x1,{xt(·)}Tt=2

inf
z2Z

c1(z)T
x1 +

TX

t=1

ct(z)T
xt(vt(z)) + d(z) (4.8a)

subject to a
T
j1x1 +

TX

t=1

ajt(z)T
xt(vt(z))  bj(z) , 8 z 2 Z , 8 j = 1, . . . , J,(4.8b)



Adjustable Robust Linear 
Programming

• Nominal dynamic problem: 
 
 
 
 

• Multi-stage Adjustable Robust Counterpart: 
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might be easily described as

maximize
{xt}Tt=1

TX

t=1

c
T
t xt + d

subject to
TX

t=1

a
T
jtxt  bj , 8 j = 1, . . . , J,

where each xt 2 Rn (without loss of generality), the situation is more complicated
whens uncertainty is inserted. Instead, one must consider the following multi-stage
adjustable robust counterpart formulation

(Multi-Stage ARC)

maximize
x1,{xt(·)}Tt=2

inf
z2Z

c1(z)
T
x1 +

TX

t=2

ct(z)
T
xt(vt(z)) + d(z) (4.8a)

subject to aj1(z)
T
x1 +

TX

t=2

ajt(z)
T
xt(vt(z))  bj(z) , 8 z 2 Z , 8 j = 1, . . . , J,(4.8b)

where vt : Rm
! R⌫ is a function that describes what is observed of z at time t, xt

is a mapping from the space of observations R⌫ to Rn. The fact that each xt is not a
vector any more but rather a mapping is important as it enables the decision to react
di↵erently depending on the realized observation. Of course, this flexibility comes at
the price of significant computational challenges.

Example 4.1. : Considering the general inventory problem presented in section 4.1,
namely the following optimization problem

minimize
xt,s

+
t ,s�t

X

t

ctxt + hts
+
t + bts

�
t

subject to s
+
t � 0, s�

t � 0

s
+
t � y1 +

tX

t0=1

xt0 � dt0

s
�
t � �y1 +

tX

t0=1

dt0 � xt0

0  xt  M ,

three questions clearly arise:

1. What is the source of uncertainty in this problem? Namely, the vector z which
perfect knowledge would reduce the problem to a deterministic one where we can
predict every outcome



Multi-Stage ARC for Inventory Problem 
• Nominal problem: 

 
 
 
 
 

• Chronology: 

• Progressively revealed uncertainty:
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where vt : Rm ! R⌫ is a function that describes what is observed of z at time t, xt is a mapping
from the space of observations R⌫ to Rn. The fact that each xt is no more a vector but
rather a mapping is important as it enables the decision to react di↵erently depending on the
realized observation. Of course, this flexibility comes at the price of significant computational
challenges.

Example 4.1. : Considering the general inventory problem presented in section 4.1, namely
the following optimization problem

minimize
xt,s

+
t ,s�t

X

t

ctxt + hts
+
t + bts

�
t

subject to s
+
t � 0, s

�
t � 0

s
+
t � y1 +

tX

t0=1

xt0 � dt0

s
�
t � �y1 +

tX

t0=1

dt0 � xt0

0  xt  M ,

three questions clearly arise:

1. What is the source of uncertainty in this problem? Namely, the vector z which perfect
knowledge would reduce the problem to a deterministic one where we can predict every
outcome

2. What are the observations vt that are made and could contribute to what decisions are
executed? One would then need to describe how these observation are related to z.

3. What is the chronology of each element of the problem: xt’s, yt’s, st’s, and vt’s.

Let’s assume that the uncertainty is limited to the vector of demand d(z). One might consider
that at each point of time, the inventory manager is able to observe all of the prior demand
before making the order for the next period. In this case, we would have that

vt(d) = d[t�1] := [ It�1 0t,T�t+1 ]d = [ d1 d2 · · · dt�1 ]T .

We are then left with defining the sequence of decision variables and observations

Chronology of executions and observations in inventory problem

x1 d[1] x2 d[2] d[T]
s+

1:T, 
s-

1:T
z

Note that in the above chronology we made explicit that the s
+
t and s

�
t variables are

auxiliary variables that are adjustable with respect to the full uncertainty vector d[T ] = d. In
fact, once d[T ] is revealed the uncertainty can be considered reduced to zero, hence the role
of z in the chronology is somewhat artificial.
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This being said we are left with the following multi-stage adjustable robust counterpart
model:

minimize
x1,{xt(·)}Tt=2,{s+t (·),s�t (·)}Tt=1

sup
d2U

c1x1 +
X

t

ctxt(d[t�1]) + hts
+
t (d) + bts

�
t (d)

subject to s
+
t (d) � 0, s

�
t (d) � 0 , 8 d 2 U , 8 t

s
+
t (d) � y1 +

tX

t0=1

xt0(d[t0�1]) � dt0 , 8 d 2 U , 8 t

s
�
t (d) � �y1 +

tX

t0=1

dt0 � xt0(d[t0�1]) , 8 d 2 U , 8 t

0  xt(d[t0�1])  M , 8 d 2 U , 8 t ,

where U captures the set of potential demand vectors.

4.3 Time consistency issues

Consider a three stage inventory problem with an initial ordering cost of 1$ per unit, and a
larger second stage ordering cost of 4$ per unit. We also assume that there are no holding cost
and that backlog cost are only charged in the final stage at a cost of 10$ per unit. Demand is
expected to be of 1 unit for each time steps with a possible upward deviation of up to 1 unit.
In order to control the level of conservatism of the solution, it is decided to use the budgeted
uncertainty set with a budget of 1 (i.e. at most half of the future total demand deviation
could occur). This gives rise to the following multi-stage ARC:

minimize
x1,x2(·),s(·)

sup
d2U

x1 + 4x2(d1) + 10s(d)

subject to s(d) � 0 , 8 d 2 U
s(d) � d1 + d2 � x1 � x2(d1) , 8 d 2 U
x1 � 0

x2(d1) � 0 , 8 d 2 U ,

where U := {d 2 R2 | (d1 � 1)+ + (d2 � 1)+  1}. One can easily confirm that an optimal
robust policy consists of ordering 3 units at time t = 1 and nothing at time t = 2. Under
this policy, the worst-case total cost of 3$ occurs for any realization of the pair (d1, d2) in U .
Intuitively, the policy is optimal since we wish to protect against the pair (2, 1) which would
require us to produce 3 units in order to avoid the large backlog cost, yet there is no reason
to delay the purchase since the cost is lower at time t = 1.

The issue we wish to highlight here is the idea that the optimality of the policy that was
identified relies entirely on the hypothesis that at time t = 2, the optimization problem that
will be solved to select x2 consists of the following:

minimize
x2,s(·)

sup
d22U2(d1)

x1 + 4x2 + 10s(d2)

subject to s(d2) � 0 , 8 d2 2 U2(d1)

s(d2) � d1 + d2 � x1 � x2 , 8 d2 2 U2(d2)

x2 � 0 ,



Solution methods for 
two-stage problems



• Theorem 4.2: Solving the multi-stage ARC model is 
NP-hard even for a two-stage problem with 
polyhedral uncertainty. 

• To prove this result, we can show that it can be 
used to answer the NP-complete 3-SAT problem: 
 
 
 
 

Difficulty of resolution of 
Multi-stage ARC



Exact solution methods for 
Two-stage ARC

• Some exact algorithms have been proposed for the two-stage 
ARC problem. 

• Hypothesis:  

• « fixed » recourse 
 
 
 

• « relatively complete » recourse 
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Step #2: Partial adjustability In the case of partial adjustability, i.e. when some
vt(z) : 6= z, it is obviously possible (and possibly sub-optimal) to simply optimize over policies
that do not adjust with respect to vt(z) and which would achieve

maximize
{xt}Tt=1

inf
z2Z

TX

t=1

ct(z)T
xt + d(z)

subject to
TX

t=1

ajt(z)T
xt  bj(z) , 8 z 2 Z , 8 j = 1, . . . , J

kxtk1  M , 8 t, 8 z 2 Z .

However, we just showed that the performance of this policy is exactly the same as the
maximum performance that could be achieved if the policy was fully adjustable. It is therefore
clear that partial adjustability cannot do better then that. This completes our proof. ⇤

Remark 4.5. : It is worth being aware that in [13] and some follow up work, the au-
thors made further progresses in establishing conditions under which the solution of the
non-adjustable robust counterpart model (4.11) can be considered to perform relatively well
compared to a problem where decision variables are instead considered adjustable. In par-
ticular, they are able to identify general conditions under which the relative sub-optimality
of such here-and-now decisions is bounded by a factor of two.

4.6 Exact solution methods for Robust Two-stage problems

In this section, we expose some algorithms that have been proposed to obtain exact solutions
to two-stage adjustable robust counterpart model with “relatively complete” and “fixed”
recourse. In particular, we are interested in obtaining the optimal “first-stage” decision x1

for the following problem:

maximize
x,y(·)

inf
z2Z

c1(z)T
x1 + c

T
2 y(z) + d(z)

subject to aj1(z)T
x + a

T
j2y(z)  bj(z) , 8 z 2 Z , 8 j = 1, . . . , J

x 2 X ,

where x 2 Rn is the decision that needs to be initially implemented while y 2 Rn is imple-
mented once z is known. Also, one might note that the e↵ect of the recourse decision variables
y(·) is not a↵ected by uncertainty (i.e. c2(z) := c2 and aj2(z) := aj2) , a property commonly
referred as “fixed recourse”. For simplicity of exposure, it is also commonly assumed that the
feasible set X is such that it guarantees that it is always possible to identify a recourse action
y that will satisfy all the constraints, a property commonly referred as “relatively complete
recourse”. In other words,

X ✓ {x 2 Rn | 8 z 2 Z, 9y 2 Rn
, aj1(z)T

x + a
T
j2y  bj(z) , 8 j = 1, . . . , J} .

In what follows we will mostly refer to the following representation of the model

(TSARC) maximize
x2X

inf
z2Z

h(x, z) , (4.12)

CHAPTER 4. ADJUSTABLE ROBUST LINEAR PROGRAMMING 64

Step #2: Partial adjustability In the case of partial adjustability, i.e. when some
vt(z) : 6= z, it is obviously possible (and possibly sub-optimal) to simply optimize over policies
that do not adjust with respect to vt(z) and which would achieve

maximize
{xt}Tt=1

inf
z2Z

TX

t=1

ct(z)T
xt + d(z)

subject to
TX

t=1

ajt(z)T
xt  bj(z) , 8 z 2 Z , 8 j = 1, . . . , J

kxtk1  M , 8 t, 8 z 2 Z .

However, we just showed that the performance of this policy is exactly the same as the
maximum performance that could be achieved if the policy was fully adjustable. It is therefore
clear that partial adjustability cannot do better then that. This completes our proof. ⇤

Remark 4.5. : It is worth being aware that in [13] and some follow up work, the au-
thors made further progresses in establishing conditions under which the solution of the
non-adjustable robust counterpart model (4.11) can be considered to perform relatively well
compared to a problem where decision variables are instead considered adjustable. In par-
ticular, they are able to identify general conditions under which the relative sub-optimality
of such here-and-now decisions is bounded by a factor of two.

4.6 Exact solution methods for Robust Two-stage problems

In this section, we expose some algorithms that have been proposed to obtain exact solutions
to two-stage adjustable robust counterpart model with “relatively complete” and “fixed”
recourse. In particular, we are interested in obtaining the optimal “first-stage” decision x1

for the following problem:

maximize
x,y(·)

inf
z2Z

c1(z)T
x1 + c

T
2 y(z) + d(z)

subject to aj1(z)T
x + a

T
j2y(z)  bj(z) , 8 z 2 Z , 8 j = 1, . . . , J

x 2 X ,

where x 2 Rn is the decision that needs to be initially implemented while y 2 Rn is imple-
mented once z is known. Also, one might note that the e↵ect of the recourse decision variables
y(·) is not a↵ected by uncertainty (i.e. c2(z) := c2 and aj2(z) := aj2) , a property commonly
referred as “fixed recourse”. For simplicity of exposure, it is also commonly assumed that the
feasible set X is such that it guarantees that it is always possible to identify a recourse action
y that will satisfy all the constraints, a property commonly referred as “relatively complete
recourse”. In other words,

X ✓ {x 2 Rn | 8 z 2 Z, 9y 2 Rn
, aj1(z)T

x + a
T
j2y  bj(z) , 8 j = 1, . . . , J} .

In what follows we will mostly refer to the following representation of the model

(TSARC) maximize
x2X

inf
z2Z

h(x, z) , (4.12)

(TSARC) (4.12)
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where we have that

h(x, z) := max
y

c1(z)T
x + c

T
2 y + d(z)

subject to aj1(z)T
x + a

T
j2y  bj(z) , 8 j = 1, . . . , J.

This latter form makes explicit the fact that we are solely interested in an optimal first-
stage decision x

⇤ and its optimal worst-case total revenue infz2Z h(x⇤
, z). Note that once

the realized z is known, it is possible to implement an optimal recourse policy simply by
reoptimizing the second stage problem involved in evaluating h(x⇤

, z).
Although, given the NP-hardness of the problem, there is in general no guarantee for

either of the methods presented below to return an exactly optimal solution in a reasonable
amount of time, some of these algorithms have been applied successfully to applications
of practical sizes. We will later explore approximation schemes that are considered more
tractable then these exact methods yet, before deploying such approximation schemes, it is
usually interesting to confirm the quality of approximate solutions on small problem instances
where exact solutions can be identified.

4.6.1 Vertex enumeration method

We first present the most straightforward way of solving two-stage robust counterpart prob-
lems in cases where it is possible to define Z as the convex hull of a certain number of points:
Z := ConvexHull({z̄1, z̄2, . . . , z̄K}).

Theorem 4.6. : Assume that the uncertainty set Z is given as the convex hull of a finite
set:

Z := ConvexHull({z̄1, z̄2, . . . , z̄K}) .

Then, the TSARC presented in problem (4.12) is equivalent to

maximize
x,{yk}Kk=1

min
k

c1(z̄k)
T
x1 + c

T
2 yk + d(z̄k) (4.13a)

subject to aj1(z̄k)
T
x1 + a

T
j2yk  bj(z̄k) , 8 k = 1, . . . , K, 8 j = 1, . . . , J (4.13b)

x 2 X . (4.13c)

To prove this theorem we will need to make use of the following lemma.

Lemma 4.7. : Assume that the uncertainty set Z is given as the convex hull of a finite set :

Z := ConvexHull({z̄1, z̄2, . . . , z̄K}) .

Then, given a concave function h(z) over Z, the optimal value of minz2Z h(z) is equal to
mink2{1,2,...,K} h(z̄k).

Proof. Let z
⇤ be an optimal value of minz2Z h(z), then since z 2 Z it is necessarily the

convex combination of the points in {z̄1, z̄2, . . . , z̄K}. Namely, there must exist ✓ 2 RK , such
that ✓ � 0 and

P
k ✓k = 1, for which

z
⇤ =

X

k

z̄k✓k .
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Difficulty of vertex 
enumeration

• A polyhedron described by m linear constraints, 
can have up to 2m/2 vertices, e.g. the box 
uncertainty set. 

• The next algorithm will use a column & constraint 
generation scheme to try to find a small subset of 
vertices needed to identify the robust first-stage 
decision. 

• The hope is that for an n-dimensional x1, we can 
work with n vertices



Performance of 
decomposition schemes



Column & constraint 
generation algorithm

• Let                                                   be a subset of vertices of      , and solve: 
 
 
 
 
 
 

1. The approximate value ŝ always provides an upper bound to true optimal 
worst-case value 

2. If ŝ is exactly equal to « minz h(    ,z) », then     is exactly optimal, where 
 
 
 

3. If ŝ is strictly greater than « minz h(    ,z) », then there exists a new vertex ẑ  of         
for which h(    , ẑ) < ŝ
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referred as “constraint-column generation” is to approximate problem (4.13) with

maximize
x,s,{yk}K0

k=1

s (4.14a)

subject to s  c1(z̄
0
k)

T
x + c

T
2 yk + d(z̄0

k) , 8 k = 1, . . . , K
0 (4.14b)

aj1(z̄
0
k)

T
x1 + a

T
j2yk  bj(z̄

0
k) , 8 k = 1, . . . , K

0
, 8 j = 1, . . . , J (4.14c)

x 2 X , (4.14d)

where z̄
0
k are member of Z 0

v := {z̄
0
1, z̄

0
2, . . . , z̄

0
K0}, a set of reasonable size even in large practical

problems.
Note first that if Z 0

v is a subset of the vertices of Z then the optimal value of problem
(4.14) is necessarily an upper bound to the optimal value (let’s call it s

⇤) of the TSARC
problem. This is due to the fact that the TSARC problem is equivalent to

maximize
x,s,{yk}Kk=1

s (4.15)

subject to s  c1(z̄k)
T
x + c

T
2 yk + d(z̄k) , 8 k = 1, 2, . . . , K (4.16)

aj1(z̄k)
T
x1 + a

T
j2yk  bj(z̄k) , 8 k = 1, 2, . . . , K, 8 j = 1, . . . , J (4.17)

x 2 X , (4.18)

where Zv := {z̄1, z̄2, . . . , z̄K} is the set of vertices of Z. Since this problem involves all vertices
which covers the subset Z 0

v involved in problem (4.14) any of its optimal solution can be used
to create an optimal solution for problem (4.14) which achieves the same objective value.
Obviously, the opposite is not always true.

Now, given an optimal solution (x̂, ŝ, {ŷk}K0
k=1) to problem (4.14), let ẑ := argminz2Z h(x̂, z)

then one can show that

• either h(x̂, ẑ) = ŝ which would indicate that x̂ is optimal since s
⇤ � minz h(x̂, z) = ŝ �

s
⇤

• or h(x̂, ẑ) < ŝ and ẑ is a vertex of Z that is not a member of Z 0
v which can be added

to Z 0
v to generate a tighter approximation

Based on this analysis, one can design the following procedure:

1. Take any x̂ 2 X

2. Identify z̄
0 := argminz2Z h(x̂, z) and construct Z 0

v := {z̄
0}

3. Iterate until algorithm converged:

(a) Solve problem (4.14) to obtain x̂ and ŝ

(b) Identify z̄
0 := argminz2Z h(x̂, z) , if h(x̂, ẑ) = ŝ then the algorithm has converged,

otherwise add z̄
0 to Z 0

v and iterate

This algorithm is guaranteed to converge in a finite number of iterations since all bounded
polyhedron described by a finite number of linear constraints have a finite number of vertices
thus the algorithm will converge after a maximum of number of iterations that is equal to
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(b) Identify z̄
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where we have that

h(x, z) := max
y

c1(z)T
x + c

T
2 y + d(z)

subject to aj1(z)T
x + a

T
j2y  bj(z) , 8 j = 1, . . . , J.

This latter form makes explicit the fact that we are solely interested in an optimal first-
stage decision x

⇤ and its optimal worst-case total revenue infz2Z h(x⇤
, z). Note that once

the realized z is known, it is possible to implement an optimal recourse policy simply by
reoptimizing the second stage problem involved in evaluating h(x⇤

, z).
Although, given the NP-hardness of the problem, there is in general no guarantee for

either of the methods presented below to return an exactly optimal solution in a reasonable
amount of time, some of these algorithms have been applied successfully to applications
of practical sizes. We will later explore approximation schemes that are considered more
tractable then these exact methods yet, before deploying such approximation schemes, it is
usually interesting to confirm the quality of approximate solutions on small problem instances
where exact solutions can be identified.

4.6.1 Vertex enumeration method

We first present the most straightforward way of solving two-stage robust counterpart prob-
lems in cases where it is possible to define Z as the convex hull of a certain number of points:
Z := ConvexHull({z̄1, z̄2, . . . , z̄K}).

Theorem 4.6. : Assume that the uncertainty set Z is given as the convex hull of a finite
set:

Z := ConvexHull({z̄1, z̄2, . . . , z̄K}) .

Then, the TSARC presented in problem (4.12) is equivalent to

maximize
x,{yk}Kk=1

min
k

c1(z̄k)
T
x1 + c

T
2 yk + d(z̄k) (4.13a)

subject to aj1(z̄k)
T
x1 + a

T
j2yk  bj(z̄k) , 8 k = 1, . . . , K, 8 j = 1, . . . , J (4.13b)

x 2 X . (4.13c)

To prove this theorem we will need to make use of the following lemma.

Lemma 4.7. : Assume that the uncertainty set Z is given as the convex hull of a finite set :

Z := ConvexHull({z̄1, z̄2, . . . , z̄K}) .

Then, given a concave function h(z) over Z, the optimal value of minz2Z h(z) is equal to
mink2{1,2,...,K} h(z̄k).

Proof. Let z
⇤ be an optimal value of minz2Z h(z), then since z 2 Z it is necessarily the

convex combination of the points in {z̄1, z̄2, . . . , z̄K}. Namely, there must exist ✓ 2 RK , such
that ✓ � 0 and

P
k ✓k = 1, for which

z
⇤ =

X

k

z̄k✓k .

x̂

x̂ x̂

x̂

Optimal solution = (ŝ, x̂, ŷk)



Column & constraint 
generation algorithm

• Based on this idea, on can design the following procedure: 
 
 
 
 
 
 
 

• The procedure will converge in finite amount of time since all 
polyhedra have a finite number of vertices
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to

maximize
x,s,{yk}Kk=1

s (4.15)

subject to s  c1(z̄k)
T
x+ c

T
2 yk + d(z̄k) , 8 k = 1, 2, . . . , K (4.16)

aj1(z̄k)
T
x+ a

T
j2yk  bj(z̄k) , 8 k = 1, 2, . . . , K, 8 j = 1, . . . , J (4.17)

x 2 X , (4.18)

where Zv := {z̄1, z̄2, . . . , z̄K} is the set of vertices of Z. Since this problem involves
all vertices which covers the subset Z

0
v involved in problem (4.14) any of its optimal

solution can be used to create an optimal solution for problem (4.14) which achieves
the same objective value. Obviously, the opposite is not always true.

Now, given an optimal solution (x̂, ŝ, {ŷk}
K0
k=1) to problem (4.14), let ẑ := argminz2Z h(x̂, z)

then one can show that

• either h(x̂, ẑ) = ŝ which would indicate that x̂ is optimal since s⇤
� minz h(x̂, z) =

ŝ � s
⇤

• or h(x̂, ẑ) < ŝ and ẑ is a vertex of Z that is not a member of Z
0
v which can be

added to Z
0
v to generate a tighter approximation

Based on this analysis, one can design the following procedure:

1. Take any x̂ 2 X

2. Identify ẑ := argminz2Z h(x̂, z) and construct Z
0
v := {ẑ}

3. Iterate until algorithm converged:

(a) Solve problem (4.14) to obtain x̂ and ŝ

(b) Identify ẑ := argminz2Z h(x̂, z) , if h(x̂, ẑ) = ŝ then the algorithm has
converged, otherwise add ẑ to Z

0
v and iterate

This algorithm is guaranteed to converge in a finite number of iterations since all
bounded polyhedron described by a finite number of linear constraints have a finite
number of vertices thus the algorithm will converge after a maximum of number of
iterations that is equal to the number of vertices of Z. The hope is that in practice,
one needs much less iterations to obtain an optimal solution pair.

The di�culty that remains to resolve is how to solve minz2Z h(x̂, z). This is an
important step as it will most likely be the bottleneck of the algorithm. Hence, although
we suggest a method below, one should invest special e↵orts in establishing for the
application that interest him whether there is a more e�cient procedure to do so. Our
method will exploit what are known as the Karush-Kuhn-Tucker (KKT) conditions of
optimality.



Identifying worst-case z 
vertex for    

• The difficulty now relies upon solving the following NP-hard 
problem: 
 
 

• One way of doing so is by solving the following MILP: 
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feasible, this implies that duality gap is zero hence that if the optimal value is finite then
it is achieved by a primal dual pair of variables that satisfy the KKT conditions above. In
particular,

h(x, z) = c1(z)T
x + c

T
2 y + d(z)

for any pair (y, �) such that

aj1(z)T
x + a

T
j2y  bj(z) , 8 j = 1, . . . , J (4.19a)

� � 0 (4.19b)

�j(aj1(z)T
x + a

T
j2y � bj(z)) = 0 , 8 j = 1, . . . , J (4.19c)

c2 =
X

j

aj2�j . (4.19d)

In other words,

min
z2Z

h(x, z) := min
z2Z,y,�,u

c1(z)T
x + c

T
2 y + d(z)

aj1(z)T
x + a

T
j2y  bj(z) , 8 j = 1, . . . , J

� � 0

�j  Muj , 8 j = 1, . . . , J

bj(z) � aj1(z)T
x � a

T
j2y  M(1 � uj) , 8 j = 1, . . . , J

c2 =
X

j

aj2�j

u 2 {0, 1}J
,

where each uj is a binary variable that was introduced to linearize the complementarity
slackness conditions 4.19c at the price of converting the problem into a mixed integer linear
program.

4.7 Exercise: Facility location problem

In this series of exercise, you will implement the two solution schemes described above on a
facility location-transportation problem. In particular, we consider a company that wishes
to acquire some warehouses to produce the goods that will be distributed to the retailers.
These retailers are located at a number of locations on a map and a number of candidate
sites have already been selected.
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where we have that

h(x, z) := max
y

c1(z)T
x + c

T
2 y + d(z)

subject to aj1(z)T
x + a

T
j2y  bj(z) , 8 j = 1, . . . , J.

This latter form makes explicit the fact that we are solely interested in an optimal first-
stage decision x

⇤ and its optimal worst-case total revenue infz2Z h(x⇤
, z). Note that once

the realized z is known, it is possible to implement an optimal recourse policy simply by
reoptimizing the second stage problem involved in evaluating h(x⇤

, z).
Although, given the NP-hardness of the problem, there is in general no guarantee for

either of the methods presented below to return an exactly optimal solution in a reasonable
amount of time, some of these algorithms have been applied successfully to applications
of practical sizes. We will later explore approximation schemes that are considered more
tractable then these exact methods yet, before deploying such approximation schemes, it is
usually interesting to confirm the quality of approximate solutions on small problem instances
where exact solutions can be identified.

4.6.1 Vertex enumeration method

We first present the most straightforward way of solving two-stage robust counterpart prob-
lems in cases where it is possible to define Z as the convex hull of a certain number of points:
Z := ConvexHull({z̄1, z̄2, . . . , z̄K}).

Theorem 4.6. : Assume that the uncertainty set Z is given as the convex hull of a finite
set:

Z := ConvexHull({z̄1, z̄2, . . . , z̄K}) .

Then, the TSARC presented in problem (4.12) is equivalent to

maximize
x,{yk}Kk=1

min
k

c1(z̄k)
T
x1 + c

T
2 yk + d(z̄k) (4.13a)

subject to aj1(z̄k)
T
x1 + a

T
j2yk  bj(z̄k) , 8 k = 1, . . . , K, 8 j = 1, . . . , J (4.13b)

x 2 X . (4.13c)

To prove this theorem we will need to make use of the following lemma.

Lemma 4.7. : Assume that the uncertainty set Z is given as the convex hull of a finite set :

Z := ConvexHull({z̄1, z̄2, . . . , z̄K}) .

Then, given a concave function h(z) over Z, the optimal value of minz2Z h(z) is equal to
mink2{1,2,...,K} h(z̄k).

Proof. Let z
⇤ be an optimal value of minz2Z h(z), then since z 2 Z it is necessarily the

convex combination of the points in {z̄1, z̄2, . . . , z̄K}. Namely, there must exist ✓ 2 RK , such
that ✓ � 0 and

P
k ✓k = 1, for which

z
⇤ =

X

k

z̄k✓k .
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feasible, this implies that duality gap is zero hence that if the optimal value is finite then
it is achieved by a primal dual pair of variables that satisfy the KKT conditions above. In
particular,

h(x, z) = c1(z)T
x + c

T
2 y + d(z)

for any pair (y, �) such that

aj1(z)T
x + a

T
j2y  bj(z) , 8 j = 1, . . . , J (4.19a)

� � 0 (4.19b)

�j(aj1(z)T
x + a

T
j2y � bj(z)) = 0 , 8 j = 1, . . . , J (4.19c)

c2 =
X

j

aj2�j . (4.19d)

In other words,

min
z2Z

h(x, z) := min
z2Z,y,�,u

c1(z)T
x + c

T
2 y + d(z)

aj1(z)T
x + a

T
j2y  bj(z) , 8 j = 1, . . . , J

� � 0

�j  Muj , 8 j = 1, . . . , J

bj(z) � aj1(z)T
x � a

T
j2y  M(1 � uj) , 8 j = 1, . . . , J

c2 =
X

j

aj2�j

u 2 {0, 1}J
,

where each uj is a binary variable that was introduced to linearize the complementarity
slackness conditions 4.19c at the price of converting the problem into a mixed integer linear
program.

4.7 Exercise: Facility location problem

In this series of exercise, you will implement the two solution schemes described above on a
facility location-transportation problem. In particular, we consider a company that wishes
to acquire some warehouses to produce the goods that will be distributed to the retailers.
These retailers are located at a number of locations on a map and a number of candidate
sites have already been selected.
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then any primal dual optimal solution pair must satisfy the following conditions

gj(x̃)  0

�̃ � 0

�̃jgj(x̃) = 0 , 8 j = 1, 2, . . . , J

rf(x̃) =
X

j

�̃jrgj(x̃)

where rf(x̃) refers to the gradient of f(·) at x̃ and similarly for rgj(x̃). Conversely,
let x̃ 2 Rn and �̃ 2 RJ be any points that satisfy the above conditions, then x̃ and �̃

are primal and dual optimal, with zero duality gap.

In case of linear programming the KKT condition can be reformulated as follows.

Corollary 4.10. : Given a linear programming problem

maximize
y

c
T
y

subject to Ay  b ,

where y 2 Rn. If this optimization problem satisfies strong duality, then any primal
dual optimal solution pair must satisfy the following conditions

Aỹ  b

�̃ � 0

�̃j(a
T

j
ỹ � bj) = 0 , 8 j = 1, 2, . . . , J

c =
X

j

�̃jaj .

Conversely, let ỹ 2 Rn and �̃ 2 RJ be any points that satisfy the above conditions, then
ỹ and �̃ are primal and dual optimal, with zero duality gap.

Hence, if we look at the optimization problem that evaluates h(x, z) for some x 2 X

and some z 2 Z, since relatively complete recourse implies that this optimization model
is feasible, this implies that the duality gap is zero hence that if the optimal value is
finite2 then it is achieved by a primal dual pair of variables that satisfy the KKT
conditions above. In particular,

h(x, z) = c1(z)
T
x+ c

T

2
y + d(z)

2This is necessarily the case for instance when the TSARC is known not to be unbounded, i.e.
8 x 2 X , 9 z 2 Z, h(x, z) < 1.
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Map indicating retailer locations and possible warehouse sites

Warehouse sites 
Retailers

For simplicity, we will assume that the maximum production that can be achieved at
each site is already predetermined. This leads to a robust two-stage optimization problem in
which the company must first decide which site to acquire, and later decide, once the local
demand for goods is known, how many goods to produce from each sites and to be delivered
to each retailers.

In particular, we will study the following model:

maximize
x,y

�
nX

i=1

cixi +
mX

j=1

(rij � dij)yij (4.20a)

subject to
nX

i=1

yij  Dj , 8 j (4.20b)

mX

j=1

yij  Pixi , 8 i (4.20c)

yij � 0 8 i, j (4.20d)

x 2 {0, 1}n
, (4.20e)

where x 2 {0, 1}n describes which locations are acquired (i.e. xi = 1 if location i is acquired),
yij 2 R describes how many goods are produced at warehouse i to satisfy the demand
at location j. The objective function accounts for the fact that it costs ci to acquire the
warehouse at site i, a revenue of rij is obtained for delivering one unit of good to a customer
at retailer location j, and dij accounts for the per unit cost of producing a good at warehouse
i and transporting it to retailer j. We also account in this model for the fact that the
production and delivery of goods must be such that we never hold more goods than there
is demand Dj at a retailer site, and that each warehouse (if acquired) does not produce
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• Robust decision problem: 
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the adjustable robust optimization model takes the form:

maximize
x,y(·)

inf
z2Z(�)

�
nX

i=1

cixi +
mX

j=1

(rij � dij)yij(z) (4.21a)

subject to
X

i

yij(z)  D̄j + D̂zj , 8 z 2 Z(�) , 8 j (4.21b)

X

j

yij(z)  Pixi , 8 z 2 Z(�) , 8 i (4.21c)

yij(z) � 0 , 8 z 2 Z(�) , 8 i, j (4.21d)

x 2 {0, 1}n
, (4.21e)

where D̄ is the nominal demand vector, D̂j expresses what is the maximum deviation in
demand one expects to see from the nominal amount at location j, and where Z(�) is the
budgeted uncertainty set, in other words

Z(�) := {z 2 Rm | � 1  z  1,

mX

j=1

|zj |  �} .

Exercise 4.1. Implementing vertex enumeration

Solve the robust two-stage optimization problem presented in problem (4.21) using vertex
enumeration for the budgeted uncertainty set when � = 1 and � = m.

Exercise 4.2. RC = ARC under � = m

Use theorem 4.3 to demonstrate that when � = m problem (4.21) is equivalent to

maximize
x,y

�
nX

i=1

cixi +
mX

j=1

(rij � dij)yij

subject to
nX

i=1

yij  D̄j � D̂j , 8 j

mX

j=1

yij  Pixi , 8 i

yij � 0 8 i, j

x 2 {0, 1}n

Exercise 4.3. Implementing column-constraint generation

Solve the robust two-stage optimization problem presented in problem (4.21) using column-
constraint generation for the budgeted uncertainty set when � = 4.
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