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Solution to Exercise 6.1: We consider the following robust constraint

g(x, z)  t , 8 z 2 D(⇢) ,

where g(x, z) := CVaR↵(rTx; z).

First, we will work on the support function. We let Z := Z1 \ Z2 with Z1 the
set discussed in theorem 6.6 and Z2 be the KL-divergence set presented in table 6.1.
Hence,

�⇤(v|Z1) := min
�2R:��v

�

�⇤(v|Z2) := min
µ2R:µ�0

K
X

k=1

1

K
µ exp(vk/µ � 1) + ⇢µ .

Based on the rule presented in table 6.1 for intersection of sets, this indicates us that
support function for Z should be

�⇤(v|Z) = min
�,µ�0,w1,w2:��w1, w1+w2=v

�+
K

X

k=1

1

K
µ exp(w2

k/µ � 1) + ⇢µ

= min
�,µ�0,w:��v�w

�+
K

X

k=1

1

K
µ exp(wk/µ � 1) + ⇢µ .

Now, looking into g⇤(x, v), we start by laying out the detailed definition of this
conjugate function:

g⇤(x, v) := inf
p2RK :p�0,

P
k pk=1

vTp � inf
s
s+ (1/↵)

X

k

pk max(�r̄T
k x � s; 0)

= inf
p2RK :p�0,

P
k pk=1

sup
s

vTp � s � (1/↵)
X

k

pk max(�r̄T
k x � s; 0)

= sup
s

inf
p2RK :p�0,

P
k pk=1

vTp � s � (1/↵)
X

k

pk max(�r̄T
k x � s; 0)

= sup
s

min
k=1,...,K

vk � s � (1/↵)max(�r̄T
k x � s; 0) ,

where we exploited Sion’s minimax theorem exploiting the fact that the feasible set for
p is bounded, and where we realized that a search over the worst-case distribution is
simply a search over the worst-case outcome.

In conclusion, we can state that the robust CVaR optimization model takes the
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form:

minimize
x,s,t,�,µ,v,w

t

�+
X

k

1

K
µ exp(wk/µ � 1) + ⇢µ � vk + s+ (1/↵)max(�r̄T

k x � s; 0)  t , 8 k

� � v � w

µ � 0
X

i

xi = 1

x � 0 ,

where � 2 R, µ 2 R, v 2 RK , w 2 RK , s 2 R, and t 2 R.

Solution to Exercise 6.2: Question 1: The optimization problem can be reformu-
lated as

maximize
x,y,t

t

subject to t 
X

i

ciy
ai
i � ci , 8 a 2 U

yi = 1 + xi/di
X

i

pixi  B

x � 0 ,

We therefore wish to use theorem 6.2 in order to obtain a tractable form for :

t �
X

i

ciy
ai
i + ci  0 , 8 a 2 U

Considering first the function g(yi, ai) := � P

i ciy
ai
i , table 6.2 already tells us how to

obtain the robust counterpart of g0(yi, ai) := �yai
i , namely

g0
⇤(yi, vi) =

vi

ln(yi)
ln

✓ �vi

ln(yi)

◆

� vi

ln(yi)
,

with the restriction that vi  0 otherwise the function evaluates to �1.
Using the help of theorem 6.9, we obtain that if g00(yi, ai) := �ciy

ai
i then the

conjugate function is

g00
⇤(yi, vi) = ci

✓

vi/ci

ln(yi)
ln

✓�vi/ci

ln(yi)

◆

� vi/ci

ln(yi)

◆

=
vi

ln(yi)
ln

✓�vi/ci

ln(yi)

◆

� vi

ln(yi)
.
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Finally, the table tells us how to handle sums of separable functions. Hence, we are
left with the following robust counterpart:

t+ �⇤(v|U) +
X

i

ci �
X

i

✓

vi

ln(yi)
ln

✓�vi/ci

ln(yi)

◆

� vi

ln(yi)

◆

 0

v  0 .

Now, to obtain �⇤(v, |U1), we first note that U1 = ā�0.25diag(ā)Z, where diag(ā) =
Pn

i=1 āeie
T
i (i.e. a matrix in Rn⇥n with diagonal equal to ā) and with Z defined as the

uncertainty set discussed in theorem 6.5. Hence,

�⇤(v|Z) := min
(�,w)2R⇥Rm:��v�w , ��0, w�0

X

i

wi + �� .

Following theorem 6.7, we have that

�⇤(v|U) = āTv + �⇤(�0.25diag(ā)v|Z) ,

hence, that

�⇤(v|U) = min
(�,w)2R⇥Rm:���0.25diag(ā)v�w , ��0, w�0

āTv +
X

i

wi + �� .

Combining the two steps we get the tractable reformulation of the robust counter-
part:

maximize
x,y,t,�,v,w

t

subject to t+ āTv +
X

i

wi + ��+
X

i

✓

ci � vi

ln(yi)
ln

✓�vi/ci

ln(yi)

◆

+
vi

ln(yi)

◆

 0

� � �0.25diag(ā)v � w

v  0

w � 0

� � 0

yi = 1 + xi/di
X

i

pixi  B

x � 0 ,

Question 2: To obtain �⇤(v, |U2), we first note that U2 = ā�0.25diag(ā)Z, where
diag(ā) =

Pn
i=1 āeie

T
i (i.e. a matrix in Rn⇥n with diagonal equal to ā) and with Z

defined as
Z := {z 2 Rn | z � 0,

X

i

zi = 1,
X

i

zi ln(zi)  ⇢} .
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To “speed up” the analysis, we observe that Z := Z1 \Z2 with Z1 the set discussed
in theorem 6.6 and Z2 be the KL-divergence set presented in table 6.1. Hence,

�⇤(v|Z1) := min
�2R:��v

�

�⇤(v|Z2) := min
µ2R:µ�0

X

i

µ exp(vi/µ � 1) + ⇢µ .

Based on the rule presented in table 6.1 for intersection of sets, this indicates us that
the support function for Z should be

�⇤(v|Z) = min
�,µ�0,w1,w2:��w1, w1+w2=v

�+
X

i

µ exp(w2
i /µ � 1) + ⇢µ .

Following theorem 6.7, we have that

�⇤(v|U2) = āTv + �⇤(�0.25diag(ā)v|Z) ,

hence, that

�⇤(v|U2) = min
�,µ�0,w1,w2:��w1, w1+w2=0.25diag(ā)v

āTv + �+
X

i

µ exp(w1
i /µ � 1) + ⇢µ

= min
�,µ�0,w:��0.25diag(ā)v�w

āTv + �+
X

i

µ exp(wi/µ � 1) + ⇢µ .

Combining the two steps we get the tractable reformulation of the robust counter-
part:

maximize
x,y,t,s,�,µ,v,w

t

subject to t+ āTv + s+
X

i

✓

ci � vi

ln(yi)
ln

✓�vi/ci

ln(yi)

◆

+
vi

ln(yi)

◆

 0

s � �+
X

i

µ exp(wi/µ � 1) + ⇢µ

� � �0.25diag(ā)v � w

v  0

µ � 0

yi = 1 + xi/di
X

i

pixi  B

x � 0 ,

Question 3: Refer to Matlab implementation using YALMIP in “Ex6 2.m”.
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Solution to Exercise 6.3: Consider the robust optimization problem:

maximize
x

min
z2Z

X

i

xi exp(zi)

subject to
X

i

xi  1

x � 0 ,

where

Z := {z 2 Rn | 9v 2 [�1, 1]n, w 2 [�1, 1], z = µ+Q(v + w), kvk1  �} .

Question: Derive a tractable reformulation of this problem as a convex optimization
problem of finite dimension ?

Solution: We can reformulate this problem as

maximize
x,t

t

subject to �
X

i

xi exp(zi)  t , z 2 Z
X

i

xi  1

x � 0 ,

We first look at the objective function g(x, z) := � P

i xi exp(zi). To find the
partial concave conjugate, we start with g0(xi, zi) := �xi exp(zi). The partial concave
conjugate of this function can be found as

g0
⇤(xi, vi) := inf

zi
vizi + xi exp(zi) = vi ln(�vi/xi) � vi ,

as long as vi  0 otherwise the infimum goes to �1. Based on the sum of separable
functions rules, we get

g⇤(x, v) :=
X

i

vi ln(�vi/xi) � vi .

Next, we need to identify the support function of Z. Yet, in the description, we
see that it is the a�ne mapping of the sum of two sets : Z := µ+Q(Z1 + Z2), where
Z1 is the budgeted uncertainty set, while Z2 := 1 · [�1, 1], an a�ne projection of the
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[�1, 1] interval. We therefore get:

�⇤(v|[�1, 1]) := |v| (based on support function of the box in R)
�⇤(v|Z2) := |

X

i

vi| (based on theorem 6.7 and Z2 := 1 · [�1, 1])

�⇤(v|Z1) := min
w+�0,w��0,��0: ��v�w+, ���v�w�

X

i

w+
i + w�

i + �� (based on corollary 6.8)

�⇤(v|Z1 + Z2) := min
w+�0,w��0,��0:��v�w+, ���v�w�

X

i

w+
i + w�

i + ��+ |
X

i

vi|

�⇤(v|Z) := �⇤(v|µ+Q(Z1 + Z2))

= min
w+�0,w��0,��0:��QT v�w+, ���QT v�w�

µTv +
X

i

w+
i + w�

i + ��+ |
X

i

qT
i vi| ,

where qi is the i-th column of Q. Note that the last two support function are obtained
used the Minkowski sum rule from table 6.1 and theorem 6.7

Putting both of these analysis together we get:

maximize
x,t,w+,w�,�

t

subject to µTv +
X

i

w+
i + w�

i + ��+ |
X

i

qT
i vi| �

X

i

(vi ln(�vi/xi) � vi)  t , z 2 Z

� � QTv � w+

� � �QTv � w�

w+ � 0, w� � 0,� � 0
X

i

xi  1

x � 0 ,


