Solution to Exercise 6.1: We consider the following robust constraint

$$
g(x, z) \leq t, \forall z \in \mathcal{D}(\rho)
$$

where $g(x, z):=\operatorname{CVaR}_{\alpha}\left(r^{T} x ; z\right)$.
First, we will work on the support function. We let $\mathcal{Z}:=\mathcal{Z}_{1} \cap \mathcal{Z}_{2}$ with \mathcal{Z}_{1} the set discussed in theorem 6.6 and Z_{2} be the KL-divergence set presented in table 6.1. Hence,

$$
\begin{aligned}
& \delta^{*}\left(v \mid \mathcal{Z}_{1}\right):=\min _{\lambda \in \mathbb{R}: \lambda \geq v} \lambda \\
& \delta^{*}\left(v \mid \mathcal{Z}_{2}\right):=\min _{\mu \in \mathbb{R}: \mu \geq 0} \sum_{k=1}^{K} \frac{1}{K} \mu \exp \left(v_{k} / \mu-1\right)+\rho \mu .
\end{aligned}
$$

Based on the rule presented in table 6.1 for intersection of sets, this indicates us that support function for \mathcal{Z} should be

$$
\begin{aligned}
\delta^{*}(v \mid \mathcal{Z}) & =\min _{\lambda, \mu \geq 0, w^{1}, w^{2}: \lambda \geq w^{1}, w^{1}+w^{2}=v} \lambda+\sum_{k=1}^{K} \frac{1}{K} \mu \exp \left(w_{k}^{2} / \mu-1\right)+\rho \mu \\
& =\min _{\lambda, \mu \geq 0, w: \lambda \geq v-w} \lambda+\sum_{k=1}^{K} \frac{1}{K} \mu \exp \left(w_{k} / \mu-1\right)+\rho \mu .
\end{aligned}
$$

Now, looking into $g_{*}(x, v)$, we start by laying out the detailed definition of this conjugate function:

$$
\begin{aligned}
g_{*}(x, v) & :=\inf _{p \in \mathbb{R}^{K}: p \geq 0, \sum_{k} p_{k}=1} v^{T} p-\inf _{s} s+(1 / \alpha) \sum_{k} p_{k} \max \left(-\bar{r}_{k}^{T} x-s ; 0\right) \\
& =\inf _{p \in \mathbb{R}^{K}: p \geq 0, \sum_{k} p_{k}=1} \sup v^{T} p-s-(1 / \alpha) \sum_{k} p_{k} \max \left(-\bar{r}_{k}^{T} x-s ; 0\right) \\
& =\sup _{s} \inf _{p \in \mathbb{R}^{K}: p \geq 0, \sum_{k} p_{k}=1} v^{T} p-s-(1 / \alpha) \sum_{k} p_{k} \max \left(-\bar{r}_{k}^{T} x-s ; 0\right) \\
& =\sup _{s} \min _{k=1, \ldots, K} v_{k}-s-(1 / \alpha) \max \left(-\bar{r}_{k}^{T} x-s ; 0\right),
\end{aligned}
$$

where we exploited Sion's minimax theorem exploiting the fact that the feasible set for p is bounded, and where we realized that a search over the worst-case distribution is simply a search over the worst-case outcome.

In conclusion, we can state that the robust CVaR optimization model takes the
form:
$\underset{x, s, t, \lambda, \mu, v, w}{\operatorname{minimize}} t$

$$
\begin{aligned}
& \lambda+\sum_{k} \frac{1}{K} \mu \exp \left(w_{k} / \mu-1\right)+\rho \mu-v_{k}+s+(1 / \alpha) \max \left(-\bar{r}_{k}^{T} x-s ; 0\right) \leq t, \forall k \\
& \lambda \geq v-w \\
& \mu \geq 0 \\
& \sum_{i} x_{i}=1 \\
& x \geq 0
\end{aligned}
$$

where $\lambda \in \mathbb{R}, \mu \in \mathbb{R}, v \in \mathbb{R}^{K}, w \in \mathbb{R}^{K}, s \in \mathbb{R}$, and $t \in \mathbb{R}$.

Solution to Exercise 6.2: Question 1: The optimization problem can be reformulated as

$$
\begin{array}{cl}
\underset{x, y, t}{\operatorname{maximize}} & t \\
\text { subject to } & t \leq \sum_{i} c_{i} y_{i}^{a_{i}}-c_{i}, \forall a \in \mathcal{U} \\
& y_{i}=1+x_{i} / d_{i} \\
& \sum_{i} p_{i} x_{i} \leq B \\
& x \geq 0,
\end{array}
$$

We therefore wish to use theorem 6.2 in order to obtain a tractable form for :

$$
t-\sum_{i} c_{i} y_{i}^{a_{i}}+c_{i} \leq 0, \forall a \in \mathcal{U}
$$

Considering first the function $g\left(y_{i}, a_{i}\right):=-\sum_{i} c_{i} y_{i}^{a_{i}}$, table 6.2 already tells us how to obtain the robust counterpart of $g^{\prime}\left(y_{i}, a_{i}\right):=-y_{i}^{a_{i}}$, namely

$$
g_{*}^{\prime}\left(y_{i}, v_{i}\right)=\frac{v_{i}}{\ln \left(y_{i}\right)} \ln \left(\frac{-v_{i}}{\ln \left(y_{i}\right)}\right)-\frac{v_{i}}{\ln \left(y_{i}\right)},
$$

with the restriction that $v_{i} \leq 0$ otherwise the function evaluates to $-\infty$.
Using the help of theorem 6.9, we obtain that if $g^{\prime \prime}\left(y_{i}, a_{i}\right):=-c_{i} y_{i}^{a_{i}}$ then the conjugate function is

$$
g_{*}^{\prime \prime}\left(y_{i}, v_{i}\right)=c_{i}\left(\frac{v_{i} / c_{i}}{\ln \left(y_{i}\right)} \ln \left(\frac{-v_{i} / c_{i}}{\ln \left(y_{i}\right)}\right)-\frac{v_{i} / c_{i}}{\ln \left(y_{i}\right)}\right)=\frac{v_{i}}{\ln \left(y_{i}\right)} \ln \left(\frac{-v_{i} / c_{i}}{\ln \left(y_{i}\right)}\right)-\frac{v_{i}}{\ln \left(y_{i}\right)} .
$$

Finally, the table tells us how to handle sums of separable functions. Hence, we are left with the following robust counterpart:

$$
\begin{aligned}
& t+\delta^{*}(v \mid \mathcal{U})+\sum_{i} c_{i}-\sum_{i}\left(\frac{v_{i}}{\ln \left(y_{i}\right)} \ln \left(\frac{-v_{i} / c_{i}}{\ln \left(y_{i}\right)}\right)-\frac{v_{i}}{\ln \left(y_{i}\right)}\right) \leq 0 \\
& v \leq 0
\end{aligned}
$$

Now, to obtain $\delta^{*}\left(v, \mid \mathcal{U}_{1}\right)$, we first note that $\mathcal{U}_{1}=\bar{a}-0.25 \operatorname{diag}(\bar{a}) \mathcal{Z}$, where $\operatorname{diag}(\bar{a})=$ $\sum_{i=1}^{n} \bar{a} e_{i} e_{i}^{T}$ (i.e. a matrix in $\mathbb{R}^{n \times n}$ with diagonal equal to \bar{a}) and with \mathcal{Z} defined as the uncertainty set discussed in theorem 6.5. Hence,

$$
\delta^{*}(v \mid \mathcal{Z}):=\min _{(\lambda, w) \in \mathbb{R} \times \mathbb{R}^{m}: \lambda \geq v-w, \lambda \geq 0, w \geq 0} \sum_{i} w_{i}+\Gamma \lambda .
$$

Following theorem 6.7, we have that

$$
\delta^{*}(v \mid \mathcal{U})=\bar{a}^{T} v+\delta^{*}(-0.25 \operatorname{diag}(\bar{a}) v \mid \mathcal{Z}),
$$

hence, that

$$
\delta^{*}(v \mid \mathcal{U})=\min _{(\lambda, w) \in \mathbb{R} \times \mathbb{R}^{m}: \lambda \geq-0.25 \operatorname{diag}(\bar{a}) v-w, \lambda \geq 0, w \geq 0} \bar{a}^{T} v+\sum_{i} w_{i}+\Gamma \lambda .
$$

Combining the two steps we get the tractable reformulation of the robust counterpart:

$\underset{x, y, t, \lambda, v, w}{\operatorname{maximize}} \quad t$

subject to $\quad t+\bar{a}^{T} v+\sum_{i} w_{i}+\Gamma \lambda+\sum_{i}\left(c_{i}-\frac{v_{i}}{\ln \left(y_{i}\right)} \ln \left(\frac{-v_{i} / c_{i}}{\ln \left(y_{i}\right)}\right)+\frac{v_{i}}{\ln \left(y_{i}\right)}\right) \leq 0$
$\lambda \geq-0.25 \operatorname{diag}(\bar{a}) v-w$
$v \leq 0$
$w \geq 0$
$\lambda \geq 0$
$y_{i}=1+x_{i} / d_{i}$
$\sum_{i} p_{i} x_{i} \leq B$
$x \geq 0$,
Question 2: To obtain $\delta^{*}\left(v, \mid \mathcal{U}_{2}\right)$, we first note that $\mathcal{U}_{2}=\bar{a}-0.25 \operatorname{diag}(\bar{a}) \mathcal{Z}$, where $\operatorname{diag}(\bar{a})=\sum_{i=1}^{n} \bar{a} e_{i} e_{i}^{T}$ (i.e. a matrix in $\mathbb{R}^{n \times n}$ with diagonal equal to \bar{a}) and with \mathcal{Z} defined as

$$
\mathcal{Z}:=\left\{z \in \mathbb{R}^{n} \mid z \geq 0, \sum_{i} z_{i}=1, \sum_{i} z_{i} \ln \left(z_{i}\right) \leq \rho\right\} .
$$

To "speed up" the analysis, we observe that $\mathcal{Z}:=\mathcal{Z}_{1} \cap \mathcal{Z}_{2}$ with \mathcal{Z}_{1} the set discussed in theorem 6.6 and Z_{2} be the KL-divergence set presented in table 6.1. Hence,

$$
\begin{aligned}
\delta^{*}\left(v \mid \mathcal{Z}_{1}\right) & :=\min _{\lambda \in \mathbb{R}: \lambda \geq v} \lambda \\
\delta^{*}\left(v \mid \mathcal{Z}_{2}\right) & :=\min _{\mu \in \mathbb{R}: \mu \geq 0} \sum_{i} \mu \exp \left(v_{i} / \mu-1\right)+\rho \mu
\end{aligned}
$$

Based on the rule presented in table 6.1 for intersection of sets, this indicates us that the support function for \mathcal{Z} should be

$$
\delta^{*}(v \mid \mathcal{Z})=\min _{\lambda, \mu \geq 0, w^{1}, w^{2}: \lambda \geq w^{1}, w^{1}+w^{2}=v} \lambda+\sum_{i} \mu \exp \left(w_{i}^{2} / \mu-1\right)+\rho \mu
$$

Following theorem 6.7, we have that

$$
\delta^{*}\left(v \mid \mathcal{U}_{2}\right)=\bar{a}^{T} v+\delta^{*}(-0.25 \operatorname{diag}(\bar{a}) v \mid \mathcal{Z})
$$

hence, that

$$
\begin{aligned}
\delta^{*}\left(v \mid \mathcal{U}_{2}\right) & =\min _{\lambda, \mu \geq 0, w^{1}, w^{2}: \lambda \geq w^{1}, w^{1}+w^{2}=0.25 \operatorname{diag}(\bar{a}) v} \bar{a}^{T} v+\lambda+\sum_{i} \mu \exp \left(w_{i}^{1} / \mu-1\right)+\rho \mu \\
& =\min _{\lambda, \mu \geq 0, w: \lambda \geq 0.25 \operatorname{diag}(\bar{a}) v-w} \bar{a}^{T} v+\lambda+\sum_{i} \mu \exp \left(w_{i} / \mu-1\right)+\rho \mu .
\end{aligned}
$$

Combining the two steps we get the tractable reformulation of the robust counterpart:

$$
\begin{array}{cl}
\underset{x, y, t, s, \lambda, \lambda, \mu, v, w}{\operatorname{maximize}} & t \\
\text { subject to } & t+\bar{a}^{T} v+s+\sum_{i}\left(c_{i}-\frac{v_{i}}{\ln \left(y_{i}\right)} \ln \left(\frac{-v_{i} / c_{i}}{\ln \left(y_{i}\right)}\right)+\frac{v_{i}}{\ln \left(y_{i}\right)}\right) \leq 0 \\
& s \geq \lambda+\sum_{i} \mu \exp \left(w_{i} / \mu-1\right)+\rho \mu \\
& \lambda \geq-0.25 \operatorname{diag}(\bar{a}) v-w \\
& v \leq 0 \\
& \mu \geq 0 \\
& y_{i}=1+x_{i} / d_{i} \\
& \sum_{i} p_{i} x_{i} \leq B \\
& x \geq 0
\end{array}
$$

Question 3: Refer to Matlab implementation using YALMIP in "Ex6_2.m".

Solution to Exercise 6.3: Consider the robust optimization problem:

$$
\begin{array}{cl}
\underset{x}{\operatorname{maximize}} & \min _{z \in \mathcal{Z}} \sum_{i} x_{i} \exp \left(z_{i}\right) \\
\text { subject to } & \sum_{i} x_{i} \leq 1 \\
& x \geq 0
\end{array}
$$

where

$$
\mathcal{Z}:=\left\{z \in \mathbb{R}^{n} \mid \exists v \in[-1,1]^{n}, w \in[-1,1], z=\mu+Q(v+w),\|v\|_{1} \leq \Gamma\right\} .
$$

Question: Derive a tractable reformulation of this problem as a convex optimization problem of finite dimension?

Solution: We can reformulate this problem as

$$
\begin{array}{cl}
\underset{x, t}{\operatorname{maximize}} & t \\
\text { subject to } & -\sum_{i} x_{i} \exp \left(z_{i}\right) \leq t, z \in \mathcal{Z} \\
& \sum_{i} x_{i} \leq 1 \\
& x \geq 0
\end{array}
$$

We first look at the objective function $g(x, z):=-\sum_{i} x_{i} \exp \left(z_{i}\right)$. To find the partial concave conjugate, we start with $g^{\prime}\left(x_{i}, z_{i}\right):=-x_{i} \exp \left(z_{i}\right)$. The partial concave conjugate of this function can be found as

$$
g_{*}^{\prime}\left(x_{i}, v_{i}\right):=\inf _{z_{i}} v_{i} z_{i}+x_{i} \exp \left(z_{i}\right)=v_{i} \ln \left(-v_{i} / x_{i}\right)-v_{i}
$$

as long as $v_{i} \leq 0$ otherwise the infimum goes to $-\infty$. Based on the sum of separable functions rules, we get

$$
g_{*}(x, v):=\sum_{i} v_{i} \ln \left(-v_{i} / x_{i}\right)-v_{i} .
$$

Next, we need to identify the support function of \mathcal{Z}. Yet, in the description, we see that it is the affine mapping of the sum of two sets : $\mathcal{Z}:=\mu+Q\left(\mathcal{Z}_{1}+\mathcal{Z}_{2}\right)$, where \mathcal{Z}_{1} is the budgeted uncertainty set, while $\mathcal{Z}_{2}:=1 \cdot[-1,1]$, an affine projection of the
$[-1,1]$ interval. We therefore get:

$$
\begin{aligned}
\delta^{*}(v \mid[-1,1]) & :=|v| \quad \text { (based on support function of the box in } \mathbb{R} \text {) } \\
\delta^{*}\left(v \mid \mathcal{Z}_{2}\right) & :=\left|\sum_{i} v_{i}\right| \quad \text { (based on theorem 6.7 and } \mathcal{Z}_{2}:=1 \cdot[-1,1] \text {) } \\
\delta^{*}\left(v \mid \mathcal{Z}_{1}\right) & :=\min _{w^{+} \geq 0, w^{-} \geq 0, \lambda \geq 0: \lambda \geq v-w^{+}, \lambda \geq-v-w^{-}} \sum_{i} w_{i}^{+}+w_{i}^{-}+\Gamma \lambda \text { (based on corollary 6.8) } \\
\delta^{*}\left(v \mid \mathcal{Z}_{1}+\mathcal{Z}_{2}\right) & :=\min _{w^{+} \geq 0, w^{-} \geq 0, \lambda \geq 0: \lambda \geq v-w^{+}, \lambda \geq-v-w^{-}} \sum_{i} w_{i}^{+}+w_{i}^{-}+\Gamma \lambda+\left|\sum_{i} v_{i}\right| \\
\delta^{*}(v \mid \mathcal{Z}) & :=\delta^{*}\left(v \mid \mu+Q\left(\mathcal{Z}_{1}+\mathcal{Z}_{2}\right)\right) \\
& =\min _{w^{+} \geq 0, w^{-} \geq 0, \lambda \geq 0: \lambda \geq Q^{T} v-w^{+}, \lambda \geq-Q^{T} v-w^{-}} \mu^{T} v+\sum_{i} w_{i}^{+}+w_{i}^{-}+\Gamma \lambda+\left|\sum_{i} q_{i}^{T} v_{i}\right|,
\end{aligned}
$$

where q_{i} is the i-th column of Q. Note that the last two support function are obtained used the Minkowski sum rule from table 6.1 and theorem 6.7

Putting both of these analysis together we get:
$\underset{x, t, w^{+}, w^{-}, \lambda}{\operatorname{maximize}} \quad t$
subject to $\quad \mu^{T} v+\sum_{i} w_{i}^{+}+w_{i}^{-}+\Gamma \lambda+\left|\sum_{i} q_{i}^{T} v_{i}\right|-\sum_{i}\left(v_{i} \ln \left(-v_{i} / x_{i}\right)-v_{i}\right) \leq t, z \in \mathcal{Z}$

$$
\begin{aligned}
& \lambda \geq Q^{T} v-w^{+} \\
& \lambda \geq-Q^{T} v-w^{-} \\
& w^{+} \geq 0, w^{-} \geq 0, \lambda \geq 0 \\
& \sum_{i} x_{i} \leq 1 \\
& x \geq 0
\end{aligned}
$$

