Putting both of these analysis together we get:
$\underset{x, t, v, w^{+}, w^{-}, \lambda}{\operatorname{maximize}} t$
subject to $\quad \mu^{T} v+\sum_{i} w_{i}^{+}+w_{i}^{-}+\Gamma \lambda+\left|\sum_{i} q_{i}^{T} v_{i}\right|-\left(\sum_{i}\left(v_{i} \ln \left(-v_{i} / x_{i}\right)-v_{i}\right)\right) \leq-t$,

$$
\lambda \geq Q^{T} v-w^{+}
$$

$$
\lambda \geq-Q^{T} v-w^{-}
$$

$$
w^{+} \geq 0, w^{-} \geq 0, \lambda \geq 0
$$

$$
\sum_{i} x_{i} \leq 1
$$

$$
x \geq 0
$$

Solution to Exercise 8.1: Since $\mathcal{D}_{1}=\mathcal{D}(\mathcal{Z}, \bar{\mu})$, we can exploit theorem 8.6 to reformulate this DRO has

$$
\begin{aligned}
\underset{x \in \mathcal{X}, q, t, w^{1}, w^{2}}{\operatorname{minimize}} & t \\
\text { subject to } & t \geq \delta^{*}\left(w^{1} \mid \mathcal{Z}\right)+\mu^{T} q-h_{*}^{1}\left(x, w^{1}+q\right) \\
& t \geq \delta^{*}\left(w^{2} \mid \mathcal{Z}\right)+\mu^{T} q-h_{*}^{2}\left(x, w^{2}+q\right),
\end{aligned}
$$

where $h^{1}(x, z):=-\frac{1}{2} \xi^{T} Q(x) \xi$ and $h^{2}(x, z):=x^{T} C z$. We can first have a look at $\delta^{*}(v \mid \mathcal{Z})$ which is the support function of a polyhedron:

$$
\delta^{*}(w \mid \mathcal{Z})=\min _{\lambda \geq 0: W^{T} \lambda=w} v^{T} \lambda
$$

Next, we can obtain $h_{*}^{2}(x, w)$ using table 6.2 which tells us:

$$
h_{*}^{2}(x, w)= \begin{cases}0 & \text { if } w=C^{T} x \\ \infty & \text { otherwise }\end{cases}
$$

Finally, we can also exploit table 6.2 for $h_{*}^{2}(x, w)$ since $h^{2}(x, z)=-\sum_{i} z^{T} Q_{i} z x_{i}$ :

$$
h_{*}^{1}(x, w)=\sup _{s^{1}, s^{2}, \ldots, s^{n}: \sum_{i} s^{i}=w}-(1 / 2) \sum_{i}\left(1 / x_{i}\right) s^{i} Q_{i}^{-1} s^{i} .
$$

Assembling everything together, we get:

$$
\begin{aligned}
\underset{x \in \mathcal{X}, q, t, w^{1}, w^{2}, \lambda^{1}, \lambda^{2}, s^{1}, \ldots, s^{n}}{\operatorname{minimize}} & t \\
\text { subject to } & t \geq v^{T} \lambda^{1}+\mu^{T} q+(1 / 2) \sum_{i}\left(1 / x_{i}\right) s^{i} Q_{i}^{-1} s^{i} \\
& \lambda^{1} \geq 0, W^{T} \lambda^{1}=w^{1} \\
& \sum_{i} s^{i}=w^{1}+q \\
& t \geq v^{T} \lambda^{2}+\mu^{T} q \\
& \lambda^{2} \geq 0, W^{T} \lambda^{2}=w^{2} \\
& w^{2}+q=C^{T} x .
\end{aligned}
$$

Solution to Exercise 8.2: We can easily remark that the DRO reduces to

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} \max _{\mu \in \mathcal{U}_{1}^{\prime}(\Gamma)} \max _{F \in \mathcal{D}(\mathcal{Z}, \mu)} \mathbb{E}_{F}\left[\max \left(-\frac{1}{2} \xi^{T} Q(x) \xi, x^{T} C \xi\right)\right]
$$

where

$$
\mathcal{U}_{1}^{\prime}(\Gamma)=\left\{\mu \mid \exists \Delta \in \mathcal{U}_{1}(\Gamma), \mu=\bar{\mu}+\Delta\right\}
$$

with

$$
\mathcal{U}_{1}(\Gamma):=\left\{\Delta \in \mathbb{R}^{m} \mid \Delta \geq 0 \sum_{i=1}^{m} \Delta_{i} \leq \Gamma\right\}
$$

Based on corollary 8.9, one should understand that the DRO now becomes equivalent to:

$$
\begin{aligned}
\underset{x \in \mathcal{X}, q, t, w^{1}, w^{2}, \lambda^{1}, \lambda^{2}, s^{1}, \ldots, s^{n}}{\operatorname{minimize}} & t+\delta^{*}\left(q \mid \mathcal{U}_{1}^{\prime}(\Gamma)\right) \\
\text { subject to } & t \geq v^{T} \lambda^{1}+(1 / 2) \sum_{i}\left(1 / x_{i}\right) s^{i} Q_{i}^{-1} s^{i} \\
& \lambda^{1} \geq 0, W^{T} \lambda^{1}=w^{1} \\
& \sum_{i} s^{i}=w^{1}+q \\
& t \geq v^{T} \lambda^{2} \\
& \lambda^{2} \geq 0, W^{T} \lambda^{2}=w^{2} \\
& w^{2}+q=C^{T} x .
\end{aligned}
$$

where $\mathcal{U}_{1}^{\prime}(\Gamma)=\left\{\mu \mid \exists \Delta \in \mathcal{U}_{1}(\Gamma), \mu=\bar{\mu}+\Delta\right\}$. Based on theorem 6.7, we have that $\delta^{*}\left(q \mid \mathcal{U}_{1}^{\prime}(\Gamma)\right)=q^{T} \bar{\mu}+\delta^{*}\left(q \mid \mathcal{U}_{1}(\Gamma)\right.$.

$$
\delta^{*}\left(q \mid \mathcal{U}_{1}(\Gamma)\right)=\sup _{\Delta \in \mathcal{U}_{1}(\Gamma)} q^{T} \Delta=\min _{\omega \geq 0: \omega \geq q} \Gamma \omega
$$

Hence, we obtain:

$$
\begin{array}{cl}
\underset{x \in \mathcal{X}, q, t, w^{1}, w^{2}, \lambda^{1}, \lambda^{2}, s^{1}, \ldots, s^{n}, \omega}{\operatorname{minimize}} & t+\bar{\mu}^{T} q+\Gamma \omega \\
\text { subject to } & \omega \geq 0, \omega \geq q \\
& t \geq v^{T} \lambda^{1}+(1 / 2) \sum_{i}\left(1 / x_{i}\right) s^{i} Q_{i}^{-1} s^{i} \\
& \lambda^{1} \geq 0, W^{T} \lambda^{1}=w^{1} \\
& \sum_{i} s^{i}=w^{1}+q \\
& t \geq v^{T} \lambda^{2} \\
& \lambda^{2} \geq 0, W^{T} \lambda^{2}=w^{2} \\
& w^{2}+q=C^{T} x .
\end{array}
$$

Solution to Exercise 8.3: The answer to this question is easier to reach if we realize that our previous efforts led us to:

$$
\begin{aligned}
& \sup _{F \in \mathcal{D}_{2}(\Gamma)} \mathbb{E}_{F}\left[\max \left(-\frac{1}{2} \xi^{T} Q(x) \xi, x^{T} C \xi\right)\right] \\
&=\underset{(q, t, \omega) \in \mathcal{Q}}{\operatorname{minimize}} \quad t+\bar{\mu}^{T} q+\Gamma \omega
\end{aligned}
$$

where

$$
\mathcal{Q}:=\left\{(q, t, \omega) \mid \exists w^{1}, w^{2}, \lambda^{1}, \lambda^{2}, s^{1}, \ldots, s^{n}, \omega, \begin{array}{l}
\omega \geq 0, \omega \geq q \\
\\
t \geq v^{T} \lambda^{1}+(1 / 2) \sum_{i}\left(1 / x_{i}\right) s^{i} Q_{i}^{-1} s^{i} \\
\lambda_{i}^{1} s^{i}=W^{T} \lambda^{1}=w^{1} \\
\\
t \geq v^{1} \lambda^{2} \\
\lambda^{2} \geq 0, W^{T} \lambda^{2}=w^{2} \\
\\
w^{2}+q=C^{T} x .
\end{array}\right\}
$$

Hence

$$
\begin{aligned}
\sup _{\Gamma \in[0, \bar{\Gamma}]} \sup _{F \in \mathcal{D}_{2}(\Gamma)} & \mathbb{E}_{F}\left[\max \left(-\frac{1}{2} \xi^{T} Q(x) \xi, x^{T} C \xi\right)\right]-\alpha \Gamma \\
& =\sup _{\Gamma \in[0, \bar{\Gamma}]} \min _{(q, t, \omega) \in \mathcal{Q}} f(t, q, \omega, \Gamma):=t+\bar{\mu}^{T} q+\Gamma(\omega-\alpha) \\
& =\min _{(q, t, \omega) \in \mathcal{Q}} t+\bar{\mu}^{T} q+\sup _{\Gamma \in[0, \bar{\Gamma}]} \Gamma(\omega-\alpha) \\
& =\min _{(q, t, \omega) \in \mathcal{Q}} t+\bar{\mu}^{T} q+\max (0, \bar{\Gamma}(\omega-\alpha)),
\end{aligned}
$$

where we first applied Sion's minimax theorem since $\Gamma$ is in a bounded set and the function $f(t, q, \omega, \Gamma)$ is linear in both $(t, q, \omega)$ and $\Gamma$. The last equality comes from the fact that since $\Gamma(\omega-\alpha)$ is linear in $\Gamma$, then the supremum over $\Gamma$ necessarily either occurs at $\Gamma=0$ or $\Gamma=\bar{\Gamma}$.

We can finally reintegrate this expression inside the globalized distributionally ro-
bust optimization problem presented in this question:

$$
\begin{aligned}
\underset{x \in \mathcal{X}, q, t_{1}, t_{2}, w^{1}, w^{2}, \lambda^{1}, \lambda^{2}, s^{1}, \ldots, s^{n}, \omega}{\operatorname{minimize}} & t_{1} \\
\text { subject to } & t_{2}+\bar{\mu}^{T} q \leq t_{1} \\
& t_{2}+\bar{\mu}^{T} q+\Gamma(\omega-\alpha) \leq t_{1} \\
& \omega \geq 0, \omega \geq q \\
& t_{2} \geq v^{T} \lambda^{1}+(1 / 2) \sum_{i}\left(1 / x_{i}\right) s^{i} Q_{i}^{-1} s^{i} \\
& \lambda^{1} \geq 0, W^{T} \lambda^{1}=w^{1} \\
& \sum_{i} s^{i}=w^{1}+q \\
& t_{2} \geq v^{T} \lambda^{2} \\
& \lambda^{2} \geq 0, W^{T} \lambda^{2}=w^{2} \\
& w^{2}+q=C^{T} x .
\end{aligned}
$$

