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Putting both of these analysis together we get:
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Solution to Exercise 8.1: Since D1 = D(Z, µ̄), we can exploit theorem 8.6 to refor-
mulate this DRO has
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Assembling everything together, we get:
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Solution to Exercise 8.2: We can easily remark that the DRO reduces to

minimize
x2X

max
µ2U 0

1(�)

max
F2D(Z,µ)

EF [max(�
1

2
⇠

T
Q(x)⇠, xT

C⇠)] ,

where
U

0
1
(�) = {µ | 9� 2 U1(�), µ = µ̄+�} ,

with

U1(�) := {� 2 Rm
|� � 0

mX

i=1

�i  �} .

Based on corollary 8.9, one should understand that the DRO now becomes equiva-
lent to :
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where U
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Hence, we obtain:
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Solution to Exercise 8.3: The answer to this question is easier to reach if we realize
that our previous e↵orts led us to:
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where we first applied Sion’s minimax theorem since � is in a bounded set and the
function f(t, q,!,�) is linear in both (t, q,!) and �. The last equality comes from the
fact that since �(! � ↵) is linear in �, then the supremum over � necessarily either
occurs at � = 0 or � = �̄.

We can finally reintegrate this expression inside the globalized distributionally ro-
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bust optimization problem presented in this question:
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