Preface: An Introduction to Convex Analysis

What is a convex set?

Definition 10.1 : A set $\mathcal{X} \subseteq \mathbb{R}^{n}$ is convex if for any two members $x_{1} \in \mathcal{X}$ and $x_{2} \in \mathcal{X}$, any "convex combination" of these two points is also a member of \mathcal{X}. Namely, for all $\theta \in[0,1]$, we have that $\theta x_{1}+(1-\theta) x_{2} \in \mathcal{X}$.

What is a convex function?

Definition 10.2 : A function $h: \mathcal{X} \rightarrow \mathbb{R}$, with $\mathcal{X} \subseteq \mathbb{R}^{n}$ as its domain, is said to be convex if its epigraph is a convex set. Namely, it is convex if and only if \mathcal{X} is a convex set and that for any two members x_{1} and x_{2} of \mathcal{X}, and any convex combination $x_{3}:=\theta x_{1}+(1-\theta) x_{2}$, with $\theta \in[0,1]$, of these two points, it is the case that $h\left(x_{3}\right) \leq$ $\theta h\left(x_{1}\right)+(1-\theta) h\left(x_{2}\right)$.

What is a concave function?

Definition 10.3 : A function $h: \mathcal{X} \rightarrow \mathbb{R}$, with $\mathcal{X} \subseteq \mathbb{R}^{n}$ as its domain, is said to be concave if the function $-h(x)$ is convex. Namely, it is concave if \mathcal{X} is a convex set, and if for any two members x_{1} and x_{2} of \mathcal{X}, and any convex combination $x_{3}:=\theta x_{1}+(1-\theta) x_{2}$, with $\theta \in[0,1]$, of these two points, it is the case that $h\left(x_{3}\right) \geq \theta h\left(x_{1}\right)+(1-\theta) h\left(x_{2}\right)$.

- In other words, a function $f(x)$ is concave if its negative is convex.

$$
-f(x) \text { convex } \Leftrightarrow f(x) \text { concave }
$$

Operations that preserves convexity

- Addition of two convex function. Namely, if $g_{1}(x)$ and $g_{2}(x)$ are convex functions then $g_{1}(x)+g_{2}(x)$ is a convex function.
- Multiplying a convex function by a positive scalar. Namely, if $g(x)$ is convex then $\alpha g(x)$ is convex for any $\alpha \geq 0$.
- Taking the supremum over a set of convex functions. Namely, if $g(x, z)$ is convex for all $z \in \mathcal{Z}$ then $\sup _{z \in \mathcal{Z}} g(x, z)$ is convex
- Taking the infimum over a subset of variables for which the function is jointly convex. Namely, if $g(x, y)$ is jointly convex in x and y, and \mathcal{X} is convex and non-empty, then $\inf _{x \in \mathcal{X}} g(x, y)$ is convex in y.

More operations that preserves convexity

- Any composition of a convex function with an affine mapping. Namely, if g : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ while $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{n}$, then $g(A x+b)$ is convex in x
- Some composition of convex and monotone functions. Namely, let $h: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ then $h(g(x))$ is convex in x if one of the conditions below apply:
- $h(\cdot)$ is convex and nondecreasing and $g(\cdot)$ is convex
- $h(\cdot)$ is convex and nonincreasing and $g(\cdot)$ is concave
- The perspective of a convex function. Namely, if $g(x)$ is convex, then $t g(x / t)$ is jointly convex in t and x as long as $t>0$.

Strict separating hyperplane theorem \& Farkas lemma

Theorem 10.4 :(Strict separating hyperplane theorem) Let $\mathcal{X} \in \mathbb{R}^{n}$ be a closed convex set and $x_{0} \notin \mathcal{X}$. Then there exists a hyperplane parametrized by $v \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ that strictly separates x_{0} from \mathcal{X}. Namely,

$$
v^{T} x \leq b, \forall x \in \mathcal{X}
$$

\&

$$
v^{T} x_{0}>b
$$

Strict separating hyperplane theorem \& Farkas lemma

Theorem 10.4 :(Strict separating hyperplane theorem) Let $\mathcal{X} \in \mathbb{R}^{n}$ be a closed convex set and $x_{0} \notin \mathcal{X}$. Then there exists a hyperplane parametrized by $v \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ that strictly separates x_{0} from \mathcal{X}. Namely,

$$
v^{T} x \leq b, \forall x \in \mathcal{X} \quad \& \quad v^{T} x_{0}>b
$$

Farkas Iemma:

Lemma 2.4. : Let W be a real $s \times m$ matrix and x be an m-dimensional vector. Then, exactly one of the following two statements is true:

1. There exists $a \lambda \in \mathbb{R}^{s}$ such that $W^{T} \lambda=x$ and $\lambda \geq 0$. A polyhedron is
2. There exists a $\Delta \in \mathbb{R}^{m}$ such that $W \Delta \leq 0$ and $x^{T} \Delta>0$.

