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What is a convex function?
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8.1 Convex sets and convex functions

Definition 8.1. : A set X ✓ Rn is convex if for any two members x1 2 X and x2 2 X ,
any “convex combination” of these two points is also a member of X . Namely, for all
✓ 2 [0, 1], we have that ✓x1 + (1 � ✓)x2 2 X .

Definition 8.2. : A function h : X ! R, with X ✓ Rn as its domain, is said to
be convex if its epigraph is a convex set. Namely, it is convex if and only if X is a
convex set and that for any two members x1 and x2 of X , and any convex combination
x3 := ✓x1 + (1 � ✓)x2, with ✓ 2 [0, 1], of these two points, it is the case that h(x3) 

✓h(x1) + (1 � ✓)h(x2).

Definition 8.3. : A function h : X ! R, with X ✓ Rn as its domain, is said to be
concave if the function �h(x) is convex. Namely, it is concave if X is a convex set, and if
for any two members x1 and x2 of X , and any convex combination x3 := ✓x1+(1�✓)x2,
with ✓ 2 [0, 1], of these two points, it is the case that h(x3) � ✓h(x1) + (1 � ✓)h(x2).

Operations that preserve convexity of functions:

• Addition of two convex function. Namely, if g1(x) and g2(x) are convex functions
then g1(x) + g2(x) is a convex function.

• Multiplying a convex function by a positive scalar. Namely, if g(x) is convex then
↵g(x) is convex for any ↵ � 0.

• Taking the supremum over a set of convex functions. Namely, if g(x, z) is convex
for all z 2 Z then supz2Z g(x, z) is convex

• Taking the infimum over a subset of variables for which the function is jointly
convex. Namely, if g(x, y) is jointly convex in x and y, and X is convex and
non-empty, then infx2X g(x, y) is convex in y.
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What is a concave function?

• In other words, a function f(x) is concave if its 
negative is convex.
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✓h(x1) + (1 � ✓)h(x2).

Definition 8.3. : A function h : X ! R, with X ✓ Rn as its domain, is said to be
concave if the function �h(x) is convex. Namely, it is concave if X is a convex set, and if
for any two members x1 and x2 of X , and any convex combination x3 := ✓x1+(1�✓)x2,
with ✓ 2 [0, 1], of these two points, it is the case that h(x3) � ✓h(x1) + (1 � ✓)h(x2).
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• Taking the supremum over a set of convex functions. Namely, if g(x, z) is convex
for all z 2 Z then supz2Z g(x, z) is convex

• Taking the infimum over a subset of variables for which the function is jointly
convex. Namely, if g(x, y) is jointly convex in x and y, and X is convex and
non-empty, then infx2X g(x, y) is convex in y.
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Operations that preserves 
convexity
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More operations that 
preserves convexity
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• Any composition of a convex function with an a�ne mapping. Namely, if g :
Rn

! R while A 2 Rn⇥m and b 2 Rn ,then g(Ax+ b) is convex in x

• Some composition of convex and monotone functions. Namely, let h : R ! R
and g : Rn

! R then h(g(x)) is convex in x if one of the conditions below apply:

– h(·) is convex and nondecreasing and g(·) is convex

– h(·) is convex and nonincreasing and g(·) is concave

• The perspective of a convex function. Namely, if g(x) is convex, then tg(x/t) is
jointly convex in t and x as long as t > 0.

10.1.1 Strict separating hyperplane theorem

Theorem 10.4. :(Strict separating hyperplane theorem) Let X 2 Rn be a closed convex
set and x0 /2 X . Then there exists a hyperplane parametrized by v 2 Rn and b 2 R that
strictly separates x0 from X . Namely,

v
T
x  b, 8 x 2 X & v

T
x0 > b

X v

Ball(x0, ✏)

✏

x�

x1

x0

x3

Proof. Since X is closed, it means that there exists some ball of radius ✏ > 0 centered
at x0 which does not intersect with X . Hence, when we try to identify the member of
X that is closest to x0, we will obtain a point x1 such that kx1 �x0k2 � ✏. To be clear,
x1 would be the solution of

x1 := argmin
x2X

kx1 � x0k2 .

Let’s construct the separating hyperplane v := x0 � x1 and b := (x0 � x1)Tx1. For this
hyperplane, we will show that both conditions are met.

First, again by contradiction, assume there exists some x3 2 X such that vT
x3 > b,

in other words

(x0 � x1)
T
x3 > (x0 � x1)

T
x1 ) (x0 � x1)

T (x3 � x1) � " > 0 .



Strict separating hyperplane 
theorem & Farkas lemma
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• Any composition of a convex function with an a�ne mapping. Namely, if g :
Rn

! R while A 2 Rn⇥m and b 2 Rn ,then g(A+ b) is convex in x

• Some composition of convex and monotone functions (see chapter 3.2 of [17]).
Namely, let h : R ! R and g : Rn

! R then h(g(x)) is convex in x if one of the
conditions below apply:

– h(·) is convex and nondecreasing, domh extends infinitely in the negative
direction, and g(·) is convex

– h(·) is convex and nonincreasing, domh extends infinitely in the positive
direction, and g(·) is concave
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in other words

(x0 � x1)
T
x3 > (x0 � x1)

T
x1 ) (x0 � x1)

T (x3 � x1) � " > 0 .

Well, then we will show that there is a point x4 on the segment between x1 and x3,
which is necessarily a member of X by convexity arguments, for which kx4 � x0k <

kx1 �x0k which contradicts the definition of x1 as the closest point to x0. Indeed, let’s
characterize the segment as any point generated with x1+✓(x3 �x1) for some ✓ 2 [0, 1]
and measure the squared distances to x0 that can be achieved on this segment:

kx1 + ✓(x3 � x1) � x0k
2
2 = ((x1 � x0) + ✓(x3 � x1))

2

= kx1 � x0k
2
2 � 2✓(x0 � x1)

T (x3 � x1) + ✓
2
kx3 � x1k

2
2

 kx1 � x0k
2
2 � 2✓"+ ✓

2
kx3 � x1k

2
2

= kx1 � x0k
2
2 � ✓(2" � ✓kx3 � x1k

2
2) < kx1 � x0k

2
2 ,

v

b/v1
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It is important to realize that as long as � � 0 then ⌥(�) �  . This is the case because
for any z that was feasible in problem (2.3) we will have

x
T
z + �

T (v � Wz) � x
T
z ,

since � � 0 and v�Wz � 0 for those z. The problem min��0⌥(�) therefore returns the
lowest upper bound for  . Yet, when studying more carefully the expression associated
with ⌥(�), we can observe that

⌥(�) =

⇢
�

T
v if x � W

T
� = 0

1 otherwise
.

The problem min��0⌥(�) therefore reduces to problem (2.4).

Step #2: Introducing Farkas lemma The most critical step of this proof relies
on Farkas lemma which states the following.

Lemma 2.4. : Let W be a real s⇥m matrix and x be an m-dimensional vector. Then,
exactly one of the following two statements is true:

1. There exists a � 2 Rs such that W T
� = x and � � 0.

2. There exists a � 2 Rm such that W�  0 and x
T� > 0.

Let us consider the convex cone CW := {y 2 Rm
| 9� 2 Rs

, � � 0, y = W
T
�}.

Geometrically, the cone CW is the conic hull of the points in Rm defined by the rows
of W , i.e. { w1 w2 . . . ws }. From this perspective, Condition 1 simply states that
x 2 CW . Alternatively, Statement 2 appears more complex but can also be stated
more simply. First note that it states that there exists a vector � 2 Rm such that
the hyperplane H�,0 := {y 2 Rm

|�T
y = 0} strictly separates x from the points

{w1, w2, . . . , ws}: i.e.

�T
x > 0 & �T

wi  0 , 8 i = 1, . . . , s .

Looking at the definition of our cone, Statement 2 is also equivalent to stating that
H�,0 strictly separates x from all of CW . Indeed, one can see that

W�  0 ) �T
wi  0 8 i = 1, . . . , s ) 8� � 0, �T

W� =
X

i

�i�
T
wi  0 .

It is therefore clear that both statements of Farkas lemma cannot be true simultane-
ously: x cannot be both a member of CW and be separated from it by some hyperplane
H�,0. Yet, based on convex analysis it is also impossible that both statements are false.
Indeed, the strict separating hyperplane theorem (see Appendix 10.1.1) states that it
must be possible to strictly separate any point x /2 CW from CW using a hyperplane.
We further argue that since CW is a cone, it must always be possible to do so with a

Farkas lemma:

A polyhedron is 
non-empty

A certificate of 
emptiness exists


