Preface: An Introduction to Convex Analysis

What is a convex set?

Definition 10.1: A set $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if for any two members $x_1 \in \mathcal{X}$ and $x_2 \in \mathcal{X}$, any "convex combination" of these two points is also a member of \mathcal{X} . Namely, for all $\theta \in [0, 1]$, we have that $\theta x_1 + (1 - \theta) x_2 \in \mathcal{X}$.

What is a convex function?

Definition 10.2 : A function $h : \mathcal{X} \to \mathbb{R}$, with $\mathcal{X} \subseteq \mathbb{R}^n$ as its domain, is said to be convex if its epigraph is a convex set. Namely, it is convex if and only if \mathcal{X} is a convex set and that for any two members x_1 and x_2 of \mathcal{X} , and any convex combination $x_3 := \theta x_1 + (1 - \theta) x_2$, with $\theta \in [0, 1]$, of these two points, it is the case that $h(x_3) \leq \theta h(x_1) + (1 - \theta) h(x_2)$.

What is a concave function?

Definition 10.3: A function $h : \mathcal{X} \to \mathbb{R}$, with $\mathcal{X} \subseteq \mathbb{R}^n$ as its domain, is said to be concave if the function -h(x) is convex. Namely, it is concave if \mathcal{X} is a convex set, and if for any two members x_1 and x_2 of \mathcal{X} , and any convex combination $x_3 := \theta x_1 + (1-\theta)x_2$, with $\theta \in [0, 1]$, of these two points, it is the case that $h(x_3) \ge \theta h(x_1) + (1-\theta)h(x_2)$.

 In other words, a function f(x) is concave if its negative is convex.

-f(x) convex $\Leftrightarrow f(x)$ concave

Operations that preserves convexity

- Addition of two convex function. Namely, if $g_1(x)$ and $g_2(x)$ are convex functions then $g_1(x) + g_2(x)$ is a convex function.
- Multiplying a convex function by a positive scalar. Namely, if g(x) is convex then $\alpha g(x)$ is convex for any $\alpha \ge 0$.
- Taking the supremum over a set of convex functions. Namely, if g(x, z) is convex for all $z \in \mathcal{Z}$ then $\sup_{z \in \mathcal{Z}} g(x, z)$ is convex
- Taking the infimum over a subset of variables for which the function is jointly convex. Namely, if g(x, y) is jointly convex in x and y, and \mathcal{X} is convex and non-empty, then $\inf_{x \in \mathcal{X}} g(x, y)$ is convex in y.

More operations that preserves convexity

- Any composition of a convex function with an affine mapping. Namely, if $g : \mathbb{R}^n \to \mathbb{R}$ while $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, then g(Ax + b) is convex in x
- Some composition of convex and monotone functions. Namely, let $h : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$ then h(g(x)) is convex in x if one of the conditions below apply:

 (\cdot) - $h(\cdot)$ is convex and nondecreasing and $g(\cdot)$ is convex

 $-h(\cdot)$ is convex and nonincreasing and $g(\cdot)$ is concave

• The perspective of a convex function. Namely, if g(x) is convex, then tg(x/t) is jointly convex in t and x as long as t > 0.

Strict separating hyperplane theorem & Farkas lemma

Theorem 10.4 :(Strict separating hyperplane theorem) Let $\mathcal{X} \in \mathbb{R}^n$ be a closed convex set and $x_0 \notin \mathcal{X}$. Then there exists a hyperplane parametrized by $v \in \mathbb{R}^n$ and $b \in \mathbb{R}$ that strictly separates x_0 from \mathcal{X} . Namely,

Strict separating hyperplane theorem & Farkas lemma

Theorem 10.4 :(Strict separating hyperplane theorem) Let $\mathcal{X} \in \mathbb{R}^n$ be a closed convex set and $x_0 \notin \mathcal{X}$. Then there exists a hyperplane parametrized by $v \in \mathbb{R}^n$ and $b \in \mathbb{R}$ that strictly separates x_0 from \mathcal{X} . Namely,

$$v^T x \le b, \,\forall x \in \mathcal{X} \qquad \& \qquad v^T x_0 > b$$

Farkas lemma:

Lemma 2.4. : Let W be a real $s \times m$ matrix and x be an m-dimensional vector. Then, exactly one of the following two statements is true:

non-empty

A certificate of

emptiness exists

- A polyhedron is 1. There exists a $\lambda \in \mathbb{R}^s$ such that $W^T \lambda = x$ and $\lambda \ge 0$.
- 2. There exists a $\Delta \in \mathbb{R}^m$ such that $W\Delta \leq 0$ and $x^T\Delta > 0$.