Distributionally Robust Optimization

Stochastic Programming

- Consider the following stochastic program:

$$
\begin{align*}
\underset{x \in \mathcal{X}}{\operatorname{maximize}} & \mathbb{E}\left[g_{0}(x, Z)\right] \tag{8.1a}\\
\text { subject to } & \mathbb{E}\left[g_{j}(x, Z)\right] \leq b_{j}, \forall j=1, \ldots, J \tag{8.1b}
\end{align*}
$$

- This model is quite flexible: bounds on probability, expected utility models, risk measures, etc.
- DRO questions the assumption that the distribution of Z is known

Ellsberg's urn game

- Consider a game in which two urns are presented to you
- Urn \#1 has an equal amount of blue and red balls inside
- Urn \#2 also has red and blue balls but of unknown proportion
- You are asked to choose between urn \#1 \& \#2.
- I will draw a ball from the chosen urn
- If you chose urn \#1 and a red ball is drawn, you win $1000 \$$
- If you chose urn \#2 and a red ball is drawn, you win 1100\$
- What wo A strict preference for urn \#1 demonstrates ambiguity aversion

Distributionally Robust Optimization

- Assume that one only knows that $F \in \mathcal{D}$
- E.g. 1: normal distrib. with mean and covariance in some confidence region
- E.g. 2: distribution supported on some region with known mean
- Instead of maximizing expected value, maximize the worst-case expected value (similarly for constraints)
$\underset{x \in \mathcal{X}}{\operatorname{maximize}} \quad \inf _{F \in \mathcal{D}} \mathbb{E}_{F}\left[g_{0}(x, Z)\right]$
subject to $\quad \mathbb{E}_{F}\left[g_{j}(x, Z)\right] \leq b_{j}, \forall j=1, \ldots, J, \forall F \in \mathcal{D}$.
- In this chapter, we focus on:

$$
\begin{equation*}
\operatorname{minimize}_{x \in \mathcal{X}} \quad \sup _{F \in \mathcal{D}} \mathbb{E}_{F}[h(x, \xi)] \tag{8.3a}
\end{equation*}
$$

Scenario based models

Scenario based models

- An alternative to moment based models consists of using predefined scenarios:

$$
\mathcal{Z}:=\left\{z^{1}, z^{2}, \ldots, z^{K}\right\}
$$

- The DRO model takes the form:

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} \sup _{p \in \mathcal{U}} \sum_{k=1} p_{k} h\left(x, z^{k}\right)
$$

- Pros : If all scenarios are covered, then DRO model can be asymptotically consistent in data-driven context (see Bayraksan \& Love [5] for survey)

$$
\sup _{p \in \mathcal{U}\left(\left\{\xi^{i}\right\}_{i=1}^{M}\right)} \sum_{k=1}^{K} p_{k} h\left(x, z^{k}\right) \xrightarrow[M \rightarrow \infty]{ } E[h(x, \xi)]
$$

- Cons: If some scenarios are missing, then there is no protection against them

Moment based models

Mean and support models

- We would like to solve:

$$
\begin{equation*}
\underset{x \in \mathcal{X}}{\operatorname{minimize}} \quad \sup _{F \in \mathcal{D}} \mathbb{E}_{F}[h(x, \xi)], \tag{8.3a}
\end{equation*}
$$

where the distribution set takes the form

$$
\mathcal{D}(\mathcal{Z}, \mu)=\left\{\begin{array}{l|l}
F \in \mathcal{M} & \begin{array}{l}
\mathbb{P}(\xi \in \mathcal{Z})=1 \\
\mathbb{E}[\xi]=\mu
\end{array}
\end{array}\right\},
$$

- E.g. : Markov inequality
$P(\xi \geq a) \leq \sup _{F \in \mathcal{D}([0, \infty[, \mu)} E[\mathbf{1}\{\xi \geq a\}]=\left\{\begin{array}{cl}1 & \text { if } \mu \geq a \\ \mu / a & \text { otherwise } .\end{array}\right.$

Semi-infinite linear programming duality

- The worst-case expected value problem looks like:

$$
\begin{align*}
\underset{F \in \mathcal{M}}{\operatorname{maximize}} & \int_{\mathcal{Z}} h(x, \xi) d F(\xi) \tag{8.4a}\\
\text { subject to } & \int_{\mathcal{Z}} d F(\xi)=1 \tag{8.4b}\\
& \int_{\mathcal{Z}} \xi d F(\xi)=\mu \tag{8.4c}
\end{align*}
$$

- Duality theory for semi-infinite linear program states that if there exists a feasible distribution then dual problem is equivalent:

$$
\begin{array}{cl}
\underset{r, q}{\operatorname{minimize}} & \mu^{T} q+r \\
\text { subject to } & z^{T} q+r \geq h(x, z), \forall z \in \mathcal{Z} \tag{8.5b}
\end{array}
$$

The main reformulation

Theorem 8.6. : Let $\mathcal{D}(\mathcal{Z}, \mu)$ be a distribution set for which there exists a feasible solution $F_{0} \in \mathcal{D}(\mathcal{Z}, \mu)$, the $D R O$ problem presented in (8.3) is equivalent to the following robust optimization problem:

$$
\begin{equation*}
\operatorname{minimize}_{x \in \mathcal{X}, q} \quad \sup _{z \in \mathcal{Z}} h(x, z)+(\mu-z)^{T} q . \tag{8.11}
\end{equation*}
$$

Moreover, the problem can be reformulated as follows when \mathcal{Z} is a convex set and $h(x, z):=\max _{k} h_{k}(x, z)$ where each $h_{k}(x, z)$ is a concave function of $z:$

$$
\begin{array}{ll}
\underset{x \in \mathcal{X}, q,\left\{v_{k}\right\}_{k}, t}{\operatorname{minimize}} & t+\mu^{T} q \\
\text { subject to } & t \geq \delta^{*}\left(v_{k} \mid \mathcal{Z}\right)-h_{*}^{k}\left(x, v_{k}+q\right), \forall k
\end{array}
$$

where for each k, $v_{k} \in \mathbb{R}^{m}$, while $\delta^{*}(v \mid \mathcal{Z})$ is the support function of \mathcal{Z} and $h_{*}^{k}(x, v)$ is the partial concave conjugate function of $h_{k}(x, z)$.

Example : Generalized Markov Inequality

- Consider trying to bound the following probability with respect to probabilities supported in the non-negative orthant with a mean of μ with \mathcal{U} as a convex set:

$$
\mathbb{P}(\xi \in \mathcal{U})
$$

- Based on Theorem 8.6, this can be measured using:

$$
\begin{aligned}
\underset{t, q, w}{\operatorname{minimize}} & t+q^{T} \mu \\
\text { subject to } \quad & t \geq \delta^{*}(w \mid \mathcal{U})+1 \\
& t \geq 0 \\
& q \geq-w \\
& q \geq 0
\end{aligned}
$$

Some intuition about the worst-case distribution

- We showed that the worst-case expected value problem is equivalent to:

$$
\begin{align*}
\underset{r, q}{\operatorname{minimize}} & \mu^{T} q+r \tag{8.5a}\\
\text { subject to } & z^{T} q+r \geq h(x, z), \forall z \in \mathcal{Z}, \tag{8.5b}
\end{align*}
$$

- For finite dimensional LP, it is well known that only $\mathrm{m}+1$ constraints are needed to get an optimal solution
- There should therefore exist a set $\mathcal{Z}^{*}:=\left\{z_{1}^{*}, z_{2}^{*}, \ldots, z_{m+1}^{*}\right\}$ for which 8.5 becomes equivalent to

$$
\begin{align*}
\underset{r, q}{\operatorname{minimize}} & \mu^{T} q+r \tag{8.7a}\\
\text { subject to } & \xi^{T} q+r \geq h(x, z), \forall z \in \mathcal{Z}^{*}, \tag{8.7b}
\end{align*}
$$

Some intuition about the worst-case distribution

- The finite dimensional LP

$$
\begin{array}{cl}
\underset{r, q}{\operatorname{minimize}} & \mu^{T} q+r \\
\text { subject to } & \xi^{T} q+r \geq h(x, z), \forall z \in \mathcal{Z}^{*} \tag{8.7b}
\end{array}
$$

is equivalent to

$$
\begin{align*}
\underset{p \in \mathbb{R}^{m+1}}{\operatorname{maximize}} & \sum_{i=1}^{m+1} p_{i} h\left(x, z_{i}^{*}\right) \tag{8.8a}\\
\text { subject to } & \sum_{i} p_{i}=1 \tag{8.8b}\\
& \sum_{i=1}^{m+1} p_{i} z_{i}^{*}=\mu
\end{align*}
$$

Some intuition about the worst-case distribution

Theorem 8.2. : Let $\mathcal{Z} \in \mathbb{R}^{m}$ be a Borel set, and F_{0} be some feasible distribution according to $\mathcal{D}(\mathcal{Z}, \mu)$, then problem (8.4) is equivalent to the following finite dimensional optimization problem

$$
\begin{array}{cl}
\underset{p,\left\{z_{i}\right\}_{i=1}^{m+1}}{\operatorname{maximize}} & \sum_{i=1}^{m+1} p_{i} h\left(x, z_{i}\right) \\
\text { subject to } & \sum_{i=1}^{m+1} p_{i}=1 \& p \geq 0 \\
& \sum_{i=1}^{m+1} p_{i} z_{i}=\mu \\
& z_{i} \in \mathcal{Z}, \forall i=1, \ldots, m+1, \tag{8.9d}
\end{array}
$$

where $p \in \mathbb{R}^{m+1}$ and each $z_{i} \in \mathbb{R}^{m}$.

Example : Mean-variance models

Example 8.7. : Consider that ξ is a random variable known to have a mean μ, and a variance of $\mathbb{E}\left[(\xi-\mu)^{2}\right]=\sigma^{2}$. This gives rise to the following DRO problem :

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} \sup _{F \in \mathcal{D}\left(\mu, \sigma^{2}\right)} \mathbb{E}_{F}[h(x, \xi)],
$$

where

$$
\mathcal{D}\left(\mu, \sigma^{2}\right):=\left\{F \mid \mathbb{P}(\xi \in \mathbb{R})=1, \mathbb{E}[\xi]=\mu, \mathbb{E}\left[(\xi-\mu)^{2}\right]=\sigma^{2}\right\}
$$

- Applying Theorem 8.6 we get:

$$
\operatorname{minimize}_{x \in \mathcal{X}, q \in \mathbb{R}^{2}} \sup _{z_{1} \in \mathbb{R}} h\left(x, z_{1}\right)+\left(\mu-z_{1}\right) q_{1}+\left(\sigma^{2}-\left(z_{1}-\mu\right)^{2}\right) q_{2}
$$

- If $h(x, z)$ is bounded below this reduces to:

$$
\operatorname{minimize}_{x \in \mathcal{X}, q_{1}, q_{2} \geq 0} \sup _{z_{1} \in \mathbb{R}} h\left(x, z_{1}\right)+\underbrace{\left(\mu-z_{1}\right) q_{1}+\left(\sigma^{2}-\left(z_{1}-\mu\right)^{2}\right) q_{2}}_{\text {concave in } \mathrm{Z}_{1}}
$$

Example: Support-meanbounded covariance model

Example 8.8. : Consider that one has information about the support \mathcal{Z}, the mean μ, and an upper bound on the second order moment matrix of the type $\mathbb{E}\left[\xi \xi^{T}\right] \preceq \Sigma$ where $A \preceq B$ refers to the fact that $B-A$ is positive semi-definite, i.e. $z^{T}(B-A) z \geq 0$ for all $z \in \mathbb{R}^{m}$. This gives rise to the following DRO problem :

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} \sup _{F \in \mathcal{D}(\mathcal{Z}, \mu, \Sigma)} \mathbb{E}_{F}[h(x, \xi)],
$$

where

$$
\mathcal{D}(\mathcal{Z}, \mu, \Sigma):=\left\{F \mid \mathbb{P}(\xi \in \mathcal{Z})=1, \mathbb{E}[\xi]=\mu, \mathbb{E}\left[\xi \xi^{T}\right] \preceq \Sigma\right\}
$$

- Solution:
$\operatorname{minimize}_{x \in \mathcal{X}, q, Q \succeq 0} \sup _{z \in \mathcal{Z}} h(x, z)+(\mu-z)^{T} q+\Sigma \bullet Q-z^{T} Q z$
- See Wiesemann et al. [42] for many more moment models

Accounting for moment uncertainty

- Data-driven moment estimation leads to moment uncertainty
- DRO problem might instead take the form:

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} \sup _{\mu \in \mathcal{U}, F \in \mathcal{D}(\mathcal{Z}, \mu)} \mathbb{E}_{F}[h(x, z)]
$$

Corollary 8.9. : Let $\mathcal{D}(\mathcal{Z}, \mu)$ be a distribution set and $\mathcal{U} \in \mathbb{R}^{m}$ be a bounded uncertainty set for the moment vector μ. Given that there exists a feasible pair (μ_{0}, F_{0}) for which $\mu_{0} \in \mathcal{U}$ and $F_{0} \in \mathcal{D}\left(\mathcal{Z}, \mu_{0}\right)$, the DRO problem presented in (8.13) is equivalent to the following robust optimization problem:

$$
\begin{equation*}
\underset{x \in \mathcal{X}, q}{\operatorname{minimize}} \sup _{z \in \mathcal{Z}} h(x, z)-z^{T} q+\delta^{*}(q \mid \mathcal{U}) \tag{8.14a}
\end{equation*}
$$

Mean-Covariance Uncertainty

Example 8.10. : In [24], the authors explain how independently and identically distributed samples $\left\{\xi_{i}\right\}_{i=1}^{M}$ from F can be used to construct the following uncertainty set:

$$
\mathcal{D}\left(\mathcal{Z}, \hat{\mu}, \hat{\Sigma}, \gamma_{1}, \gamma_{2}\right)=\left\{\begin{array}{l|l}
F \in \mathcal{M} & \begin{array}{l}
\mathbb{P}(\xi \in \mathcal{Z})=1 \\
(\mathbb{E}[\xi]-\hat{\mu})^{T} \hat{\Sigma}^{-1}(\mathbb{E}[\xi]-\hat{\mu}) \leq \gamma_{1} \\
\mathbb{E}\left[(\xi-\hat{\mu})(\xi-\hat{\mu})^{T}\right] \preceq\left(1+\gamma_{2}\right) \hat{\Sigma}
\end{array}
\end{array}\right\},
$$

- The parameters can be chosen such that this set has high probability of containing the true distribution

$$
\begin{aligned}
\operatorname{minimize}_{x \in, ~}^{\operatorname{ming}} \mathrm{Z} & \sup _{z \in \mathcal{Z}} h(x, z)-z^{T} q-z^{T} Q z \\
& \quad+\left(\left(1+\gamma_{2}\right) \hat{\Sigma}-\hat{\mu} \hat{\mu}^{T}\right) \bullet Q+\hat{\mu}^{T} q+\sqrt{\gamma_{1}}\left\|\hat{\Sigma}^{1 / 2}(q+2 Q \hat{\mu})\right\|_{2}
\end{aligned}
$$

We will exploit: $\delta^{*}\left(\left.\left[\begin{array}{ll}v_{1}^{T} & v_{2}^{T}\end{array}\right] \right\rvert\, \mathcal{Z}_{1} \times \mathcal{Z}_{2}\right)=\delta^{*}\left(v_{1} \mid \mathcal{Z}_{1}\right)+\delta^{*}\left(v_{2} \mid \mathcal{Z}_{2}\right)$

Exercise $8.1+8.2$

Consider the following DRO problem:

$$
\begin{equation*}
\underset{x \in \mathcal{X}}{\operatorname{minimize}} \sup _{F \in \mathcal{D}_{1}} \mathbb{E}_{F}\left[\max \left(-\frac{1}{2} \xi^{T} Q(x) \xi, x^{T} C \xi\right)\right] \tag{8.17}
\end{equation*}
$$

where $\mathcal{X}:=\left\{x \in \mathbb{R}_{+}^{n} \mid A x \leq b\right\}$ for some $A \in \mathbb{R}^{p \times n}$ and $b \in \mathbb{R}^{p}, Q(x):=\sum_{i=1}^{n} Q_{i} x_{i}$ with each $Q_{i} \in \mathbb{R}^{m \times m}$ such that $Q_{i} \succ 0$, and $C \in \mathbb{R}^{n \times m}$ such that each $C_{i j} \geq 0$.

Exercise 8.1. Mean-support DRO problem

Derive an explicit finite dimensional representation for the DRO problem (8.17) when

$$
\mathcal{D}_{1}:=\left\{F \mid \mathbb{P}_{F}(\xi \in \mathcal{Z}) \geq 1, \mathbb{E}_{F}[\xi]=\bar{\mu}\right\}
$$

where $\mathcal{Z}:=\left\{z \in \mathbb{R}^{m} \mid W z \leq v\right\}$, with $W \in \mathbb{R}^{p \times m}, v \in \mathbb{R}^{p}$, and $\bar{\mu} \in \mathbb{R}^{n}$.

Exercise 8.2. DRO with moment uncertainty

Derive an explicit finite dimensional representation for problem (8.17) when the distribution ambiguity set takes the form:

$$
\mathcal{D}_{2}(\Gamma):=\left\{F \mid \mathbb{P}_{F}(\xi \in \mathcal{Z})=1, \mathbb{E}_{F}[\xi] \geq \bar{\mu}, \sum_{i} \mathbb{E}_{F}\left[\xi_{i}\right]-\bar{\mu}_{i} \leq \Gamma\right\}
$$

- Hint: Use Theorem 8.6 and Corollary 8.9

Theorem 8.6. : Let $\mathcal{D}(\mathcal{Z}, \mu)$ be a distribution set for which there exists a feasible solution $F_{0} \in \mathcal{D}(\mathcal{Z}, \mu)$, the $D R O$ problem presented in (8.3) is equivalent to the following robust optimization problem:

$$
\begin{equation*}
\operatorname{minimize}_{x \in \mathcal{X}, q} \quad \sup _{z \in \mathcal{Z}} h(x, z)-z^{T} q+\mu^{T} q \tag{8.11}
\end{equation*}
$$

Moreover, the problem can be reformulated as follows when \mathcal{Z} is a convex set and $h(x, z):=\max _{k} h_{k}(x, z)$ where each $h_{k}(x, z)$ is a concave function of $z:$

$$
\begin{array}{ll}
\underset{x \in \mathcal{X}, q,\left\{v_{k}\right\}_{k}, t}{\operatorname{minimize}} & t+\mu^{T} q \\
\text { subject to } & t \geq \delta^{*}\left(v_{k} \mid \mathcal{Z}\right)-h_{*}^{k}\left(x, v_{k}+q\right), \forall k
\end{array}
$$

where for each $k, v_{k} \in \mathbb{R}^{m}$, while $\delta^{*}(v \mid \mathcal{Z})$ is the support function of \mathcal{Z} and $h_{*}^{k}(x, v)$ is the partial concave conjugate function of $h_{k}(x, z)$.

Corollary 8.9. : Let $\mathcal{D}(\mathcal{Z}, \mu)$ be a distribution set and $\mathcal{U} \in \mathbb{R}^{m}$ be a bounded and convex uncertainty set for the moment vector μ. Given that for all $\mu \in \mathcal{U}$, there exists an $F \in \mathcal{D}(\mathcal{Z}, \mu)$, the $D R O$ problem presented in (8.14) is equivalent to the following robust optimization problem:

$$
\begin{equation*}
\underset{x \in \mathcal{X}, q}{\operatorname{minimize}} \quad \sup _{z \in \mathcal{Z}} h(x, z)-z^{T} q+\delta^{*}(q \mid \mathcal{U}) \tag{8.15a}
\end{equation*}
$$

Moreover, the problem can be reformulated as follows when \mathcal{Z} is a convex set and $h(x, z):=\max _{k} h_{k}(x, z)$ where each $h_{k}(x, z)$ is a concave function:

$$
\begin{array}{ll}
\underset{x \in \mathcal{X}, q,\left\{v_{k}\right\}_{k}, t}{\operatorname{minimize}} & t+\delta^{*}(q \mid \mathcal{U}) \\
\text { subject to } & t \geq \delta^{*}\left(v_{k} \mid \mathcal{Z}\right)-h_{*}^{k}\left(x, v_{k}+q\right), \forall k
\end{array}
$$

where for each $k, v_{k} \in \mathbb{R}^{m}$, while $\delta^{*}(v \mid \mathcal{Z})$ is the support function of \mathcal{Z} and $h_{*}^{k}(x, v)$ is the partial concave conjugate function of $h_{k}(x, z)$.

Table 6.1: Table of reformulations for uncertainty sets (Table 1 in [8])

Uncertainty region	\mathcal{Z}	Support function $\delta^{*}(v \mid \mathcal{Z})$								
Box	$\\|z\\|_{\infty} \leq \rho$	$\rho\\|v\\|_{1}$								
Ball	$\\|z\\|_{2} \leq \rho$	$\rho\\|v\\|_{2}$								
Polyhedral	$b-B z \geq 0$	$\inf _{w \geq 0: B^{T} w=v} b^{T} w$								
Cone	$b-B z \in C$	$\inf _{w \in C^{*}: B^{T} w=v} b^{T} w$								
KL-Divergence	$\sum_{l} z_{l} \ln \left(\frac{z_{l}}{z_{l}^{0}}\right) \leq \rho$	$\inf _{u \geq 0} \sum_{l} z_{l}^{0} u e^{\left(v_{l} / u\right)-1}+\rho u$								
Geometric prog.	$\sum_{i} \alpha_{i} e^{\left(d_{i}\right)^{T} z} \leq \rho$	$\inf _{u \geq 0, w \geq 0: \sum_{i} d_{i} w_{i}=v} \sum_{i}\left\{w_{i} \ln \left(\frac{w_{i}}{\alpha_{i} u}\right)-w_{i}\right\}+\rho u$								
Intersection	$\mathcal{Z}=\cap_{i} \mathcal{Z}_{i}$	$\inf _{\left\{w_{i}\right\}: \sum_{i} w_{i}=v} \sum_{i} \delta^{*}\left(w^{i} \mid \mathcal{Z}_{i}\right)$								
Example	$\begin{aligned} & \mathcal{Z}_{k}=\left\{z \mid\\|z\\|_{k} \leq \rho_{k}\right\} \\ & \quad k=1,2 \end{aligned}$	$\inf _{\left(w^{1}, w^{2}\right): w^{1}+w^{2}=v} \rho_{1}\left\\|w^{1}\right\\|_{\infty}+\rho_{2}\left\\|w^{2}\right\\|_{2}$								
Minkowski sum	$\mathcal{Z}=\mathcal{Z}_{1}+\cdots+\mathcal{Z}_{K}$	$\sum_{i} \delta^{*}\left(v \mid \mathcal{Z}_{i}\right)$								
Example	$\begin{aligned} & \mathcal{Z}_{1}=\left\{z \mid\\|z\\|_{\infty} \leq \rho_{\infty}\right\} \\ & \mathcal{Z}_{2}=\left\{z \mid\\|z\\|_{2} \leq \rho_{2}\right\} \end{aligned}$	$\rho_{\infty}\\|v\\|_{1}+\rho_{2}\\|v\\|_{2}$								
Convex hull	$\mathcal{Z}=\operatorname{conv}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{K}\right)$	$\max _{i} \delta^{*}\left(v \mid \mathcal{Z}_{i}\right)$								
Example	$\begin{aligned} & \mathcal{Z}_{1}=\left\{z \mid\\|z\\|_{\infty} \leq \rho_{\infty}\right\} \\ & \mathcal{Z}_{2}=\left\{z\| \| z-z^{0} \\|_{2} \leq \rho_{2}\right\} \end{aligned}$	$\max \left\{\rho_{\infty}\\|v\\|_{1},\left(z^{0}\right)^{T} v+\rho_{2}\\|v\\| \\|_{2}\right\}$								

Table 6.2: Table of reformulations for constraint functions (Table 2 in [8])

Constraint function	$g(x, z)$	Partial concave conjugate $g_{*}(x, v)$
Linear in z	$z^{T} g(x)$	$\left\{\begin{array}{cl}0 & \text { if } v=g(x) \\ -\infty & \text { otherwise }\end{array}\right.$
Concave in z, separable in z and x	$g(z)^{T} x$	$\sup _{\left\{s^{i}\right\}_{i=1}^{n}: \sum_{i=1}^{n} s^{i}=v} \sum_{i} x_{i}\left(g_{i}\right)_{*}\left(s^{i} / x_{i}\right)$
Example	$-\sum_{i} \frac{1}{2}\left(z^{T} Q_{i} z\right) x_{i}$	$\sup _{\left\{s^{i}\right\}_{i=1}^{n}: \sum_{i=1}^{n} s^{i}=v}-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(s^{i}\right)^{T} Q_{i}^{-1} s^{i}}{x_{i}}$
Sum of functions	$\sum_{i} g_{i}(x, z)$	$\sup _{\left\{s^{i}\right\}_{i=1}^{n}: \sum_{i} s^{i}=v} \sum_{i}\left(g_{i}\right)_{*}\left(x, s^{i}\right)$
Sum of separable functions	$\sum_{i} g_{i}\left(x, z_{i}\right)$	$\sum_{i=1}^{n}\left(g_{i}\right)_{*}\left(x, v_{i}\right)$
Example	$\begin{aligned} & -\sum_{i=1}^{m} x_{i}^{z_{i}} \\ & x_{i}>1,0 \leq z \leq 1 \end{aligned}$	$\left\{\begin{array}{cl} \sum_{i=1}^{m}\left(\frac{v_{i}}{\ln x_{i}} \ln \frac{-v_{i}}{\ln x_{i}}-\frac{v_{i}}{\ln x_{i}}\right) & \text { if } v \leq 0 \\ -\infty & \text { otherwise } \end{array}\right.$

Wasserstein distance based models
(see separate set of slides by D. Kuhn)
(see an example of implementation in RSOME documentation)

