
Distributionally Robust 
Optimization



Stochastic Programming
• Consider the following stochastic program: 

• This model is quite flexible: bounds on probability, 
expected utility models, risk measures, etc. 

• DRO questions the assumption that the distribution 
of Z is known

Chapter 8

Distributionally Robust

Optimization

Distributionally robust optimization refers to a decision model that is based on stochas-
tic programming but for which the knowledge of the distribution of Z is incomplete.
In particular, one might consider the following optimization model

maximize
x2X

E [g0(x, Z)] (8.1a)

subject to E [gj(x, Z)]  bj , 8j = 1, . . . , J (8.1b)

where Z 2 Rm is a random vector, g0(x, z) is a profit function, each gj(x, z) captures
a performance criterion that we wish to keep below zero on average. Note that the
expression E [g(x, Z)] is quite flexible in terms of what it can capture. For instance, it
can capture the probability that a certain resource be depleted by using g(x, z) := 0
if f(x, z)  d and g(x, z) := 1 otherwise, where f(x, z) is the function that computes
how many resources are used with the production plan x when z occurs. Indeed in this
example,

E [g(x, Z)] = P(f(x, Z)  d) · 0 + P(f(x, Z) > d) · 1 = P(f(x, Z) > d).

The expression E [g0(x, z)] can also be used to capture risk aversion through the ex-
pected utility theory when using g0(x, z) := u(f(x, z)), where f(x, z) is some revenue
function while u(·) is a non-decreasing concave utility function.

The DRO framework questions the classical assumption that the distribution of Z,
which we call F , is exactly known. In practice, there is often many reasons to be doubt-
ful about any particular choice for F . This is especially the case in situations where
decision models are designed based on historical observation of the random vector
Z. These observations could take the form of independent and identically distributed
samples from F and would then typically be used to estimate the parameters of distri-
bution form such as a normal distribution, Poisson distribution, Weibull distribution,
etc. When the random vector is large, then it can easily be the case that there are
many distribution models that could explain the data equally well. Selecting one of
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Ellsberg’s urn game
• Consider a game in which two urns are presented to you 

• Urn #1 has an equal amount of blue and red balls inside 
• Urn #2 also has red and blue balls but of unknown proportion 

• You are asked to choose between urn #1 & #2.  

• I will draw a ball from the chosen urn 
• If you chose urn #1 and a red ball is drawn, you win 1000$ 
• If you chose urn #2 and a red ball is drawn, you win 1100$ 

• What would you choose ?A strict preference for urn #1 
demonstrates ambiguity aversion



Distributionally Robust 
Optimization

• Assume that one only knows that   
• E.g. 1: normal distrib. with mean and covariance in some confidence region 
• E.g. 2: distribution supported on some region with known mean  

• Instead of maximizing expected value, maximize the worst-case 
expected value (similarly for constraints) 
 
 
 

• In this chapter, we focus on : 
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these in order to construct and solve a stochastic program such as (8.1) might give rise
to what’s called the “Optimizer’s curse” (see [39]), i.e. identifying a solution that over
exploits the described distribution model resulting in an optimistic bias about future
performance which can lead to great post-decision disappointment in out-of-sample
tests. For this reason, the DRO paradigm suggests to drop the assumption of a known
distribution F but rather identify a distribution set D assumed to contain the true
distribution. Confronted with such ambiguity about F , DRO follows an ambiguity
aversion principle that replaces the stochastic program with

maximize
x2X

inf
F2D

E F [g0(x, Z)] (8.2a)

subject to E F [gj(x, Z)]  bj , 8j = 1, . . . , J , 8F 2 D . (8.2b)

Note that for each constraint, the DRO model will make sure that the expected value
of gj(x, Z) is smaller or equal to bj for all F 2 D, and will use as objective value the
worst-case expected value of g0(x, Z) achieved by any distribution F in D.

In this chapter, we will focus on the problem

minimize
x2X

sup
F2D

E F [h(x, ⇠)] , (8.3a)

where ⇠ is the random vector drawn from a distribution F , since it is the form that is
most commonly used in the literature, but the results we obtain can easily be adapted
to the model in (8.2) (e.g. consider h0(x, z) := �g0(x, z)).

8.1 Moment based models

In this type of approach, the random variable is assumed to have a continuous support
and only a number of moments are known for the distribution F .

8.1.1 Mean and support models

Perhaps the most famous uncertainty set in this category is one that accounts for the
mean and support of the distribution as follows:

D(Z, µ) =

⇢
F 2 M

����
P(⇠ 2 Z) = 1
E [⇠] = µ

�
,

where M is the set of all probability measures on the measurable space (Rm
,B), where

B is the Borel �-algebra on Rm, and where Z ✓ Rm is a Borel set (e.g. a closed set in
Rm).

This ambiguity set is actually the one that is used in probability inequalities such
as Markov inequality which states that if ⇠ is a non-negative random variable with an
expected value of µ then

P (⇠ � a)  sup
F2D([0,1[,µ)

P (⇠ � a) = µ/a .

F 2 D
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Scenario based models
• An alternative to moment based models consists of using predefined 

scenarios: 

• The DRO model takes the form: 
 
 

• Pros : If all scenarios are covered, then DRO model can be 
asymptotically consistent in data-driven context (see Bayraksan & Love 
[5] for survey) 
 
 
 

• Cons: If some scenarios are missing, then there is no protection against 
them

8.2. SCENARIO-BASED MODELS 141

In the second case, i.e. �⇤(q,Q | U2), we need to reformulate the following expression:

max
z12Rm,Z22Sm⇥m

Q • Z2 + q
T
z1

subject to Z2 � (1 + �2)⌃̂+ µ̂µ
T + µµ̂

T
� µ̂µ̂

T
.

After replacing Z
0
2 := Z2 � µ̂z

T

1 � z1µ̂
T , we get

max
z12Rm,Z

0
22Sm⇥m

Q • Z
0
2 + (q + 2µ̂T

Q)T z1

subject to Z
0
2 � (1 + �2)⌃̂ � µ̂µ̂

T
,

which can be optimized separately in z1 and Z
0
2. In the former case, the optimal value

is unbounded unless q = �2µ̂T
Q otherwise (q + 2µ̂T

Q)z1 = 0. In the latter case, the
problem becomes unbounded if Q ✏ 0 since then their is a direction that can be used
to create an eigenvector of Z 0

2 for which the eigenvalue is unbounded on the negative
side yet leads to an arbitrary increase of the objective function. If Q ⌫ 0, then the
maximum is reached at Z2 = (1 + �2)⌃̂ � µ̂µ̂

T . Overall, we get

�
⇤(q,Q | U2) := ((1 + �2)⌃̂ � µ̂µ̂

T ) • Q+ 1{q = �2µ̂T
Q} + 1{Q ⌫ 0} .

Taking these two results together and the rule for composing �
⇤(z | Z1 \ Z2), we

obtain:

�
⇤((q1, Q2) := min

v1,v22Rm,V1,V22Sm⇥m

((1 + �2)⌃̂ � µ̂µ̂
T ) • V2 + µ̂

T
v1 +

p
�1k⌃̂

1/2
v1k2

subject to V1 = 0

v2 = �2V2µ̂

V2 ⌫ 0

q = v1 + v2 & Q = V1 + V2 .

Assembling this reduction with the model presented in (8.12), we get that the DRO
model reduces to

minimize
x2X ,q,Q,r

r + ((1 + �2)⌃̂+ µ̂µ̂
T ) • Q2 + µ̂

T
q +

p
�1k⌃̂

1/2(q + 2Qµ̂)k2

subject to r � sup
z12Z

hk(x, z1) � z
T

1 q � z
T

1 Qz1 , 8 k

Q ⌫ 0 .

8.2 Scenario-based models

An alternative to moment-based approaches consists in starting of with a set of sce-
narios Z := {z

1
, z

2
, . . . , z

K
} and to consider the following DRO problem

minimize
x2X

sup
p2U

KX

k=1

pkh(x, z
k) ,
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<latexit sha1_base64="rhnUWdI/tYiDSKhB1BfEuFULd7s="></latexit>

sup
p2U({⇠i}M

i=1)

KX

k=1

pkh(x, z
k) ����!

M!1
E[h(x, ⇠)]



Moment based 
models



Mean and support models

• We would like to solve: 
 
 
where the distribution set takes the form 
 
 

• E.g. : Markov inequality
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these in order to construct and solve a stochastic program such as (8.1) might give rise
to what’s called the “Optimizer’s curse” (see [39]), i.e. identifying a solution that over
exploits the described distribution model resulting in an optimistic bias about future
performance which can lead to great post-decision disappointment in out-of-sample
tests. For this reason, the DRO paradigm suggests to drop the assumption of a known
distribution F but rather identify a distribution set D assumed to contain the true
distribution. Confronted with such ambiguity about F , DRO follows an ambiguity
aversion principle that replaces the stochastic program with

maximize
x2X

inf
F2D

E F [g0(x, Z)] (8.2a)

subject to E F [gj(x, Z)]  bj , 8j = 1, . . . , J , 8F 2 D . (8.2b)

Note that for each constraint, the DRO model will make sure that the expected value
of gj(x, Z) is smaller or equal to bj for all F 2 D, and will use as objective value the
worst-case expected value of g0(x, Z) achieved by any distribution F in D.

In this chapter, we will focus on the problem

minimize
x2X

sup
F2D

E F [h(x, ⇠)] , (8.3a)

where ⇠ is the random vector drawn from a distribution F , since it is the form that is
most commonly used in the literature, but the results we obtain can easily be adapted
to the model in (8.2) (e.g. consider h0(x, z) := �g0(x, z)).

8.1 Moment based models

In this type of approach, the random variable is assumed to have a continuous support
and only a number of moments are known for the distribution F .

8.1.1 Mean and support models

Perhaps the most famous uncertainty set in this category is one that accounts for the
mean and support of the distribution as follows:

D(Z, µ) =

⇢
F 2 M

����
P(⇠ 2 Z) = 1
E [⇠] = µ

�
,

where M is the set of all probability measures on the measurable space (Rm
,B), where

B is the Borel �-algebra on Rm, and where Z ✓ Rm is a Borel set (e.g. a closed set in
Rm).

This ambiguity set is actually the one that is used in probability inequalities such
as Markov inequality which states that if ⇠ is a non-negative random variable with an
expected value of µ then

P (⇠ � a)  sup
F2D([0,1[,µ)

P (⇠ � a) = µ/a .
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E[1{⇠ � a}] =
⇢

1 if µ � a
µ/a otherwise.



Semi-infinite linear 
programming duality

• The worst-case expected value problem looks like: 
 
 
 
 
 
 
 

• Duality theory for semi-infinite linear program states that if there exists a 
feasible distribution then dual problem is equivalent: 
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The biggest conceptual challenge in dealing with this type of robust optimization
model is the fact that, unlike previous robust optimization models we encountered,
nature does not control a finite dimensional vector but rather a function F : B ! R
(intuitively, F : Rm

! R when F has a density function). Yet the analysis remains
quite similar to what we have seen up to this point. For any fixed decision x, we
would like to employ duality theory to reformulate the worst-case analysis problem as
an infimum over a set of additional auxiliary variables in order to reintegrate the result
of this analysis in the DRO model.

Looking more closely at the worst-case analysis problem, one might be able to
recognize that it is actually a linear program but of semi-infinite dimension (infinite
number of decision variables, and finite number of constraints). In particular, we are
interested in

maximize
F2M

Z

Z
h(x, ⇠)dF (⇠) (8.4a)

subject to

Z

Z
dF (⇠) = 1 (8.4b)

Z

Z
⇠dF (⇠) = µ , (8.4c)

where we further assume that h(x, ·) is real-valued measurable in (Rm
,B).

Based on the theory of semi-infinite conic programs (see Theorem 3.4 in [37]), one
can establish that the following semi-infinite infinite program is the dual problem and
that strong duality applies as long as the ambiguity set D(Z, µ) 6= ;, i.e. that there
exists an F 2 D(Z, µ):

minimize
r,q

µ
T
q + r (8.5a)

subject to z
T
q + r � h(x, z) , 8 z 2 Z , (8.5b)

where r 2 R and q 2 Rm are respectively the dual variables associated with constraints
(8.4b) and (8.4c). One can for instance formulate the Lagrangean equation for this
problem as:

L(F, r, q) :=

Z

Z
h(x, ⇠)dF (⇠) + r(1 �

Z

Z
dF (⇠)) + q

T (µ �

Z

Z
⇠dF (⇠))

= r + µ
T
q +

Z

Z
(h(x, ⇠) � r � q

T
⇠) dF (⇠) .

The dual problem is obtained through

sup
F

inf
r,q

L(F, r, q)  inf
r,q

sup
F

L(F, r, q) =

⇢
r + µ

T
q if h(x, z) � r � q

T
z  0 , 8 z 2 Z

1 otherwise
,

with equality being met when D(Z, µ) 6= ; and there exists an F 2 D(Z, µ).
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The main reformulation
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where the last conditions follows from the fact that Z is a convex set. We can then
verify the second claim about the relation between the two objective values:

KX

k=1

p
0
k
hk(x, z

0
k
) =

KX

k=1

p
0
k
hk

 
x,

 
1

p0
k

X

i2Ik

pizi

!!

�

KX

k=1

p
0
k

 
1

p0
k

X

i2Ik

pihk(x, zi)

!

=
KX

k=1

X

i2Ik

pih(x, zi) =
X

i

pih(x, zi) .

This completes our proof. ⇤

One can actually simply exploit the result of theorem 8.4 to conclude that when
h(x, z) is a concave function of z, the worst-case distribution ends up being one that
puts all of its mass at µ. Hence, the DRO problem reduces to a very trivial form.

Corollary 8.5. : When Z is a convex set and h(x, z) is a concave function of z, then
the DRO problem presented in (8.3) is equivalent to

minimize
x2X

h(x, µ) .

Now that we have built some much needed intuition about this dual reformulation
and about the structure of worst-case distributions. We can turn ourself toward the
reformulation of a DRO problem as in (8.3). Indeed, following the same steps as used
for robust optimization, we get the following result.

Theorem 8.6. : Let D(Z, µ) be a distribution set for which there exists a feasible so-
lution F0 2 D(Z, µ), the DRO problem presented in (8.3) is equivalent to the following
robust optimization problem:

minimize
x2X ,q

sup
z2Z

h(x, z) + (µ � z)T q . (8.11)

Moreover, the problem can be reformulated as follows when Z is a convex set and
h(x, z) := maxk hk(x, z) where each hk(x, z) is a concave function of z:

minimize
x2X ,q,{vk}k,t

t

subject to t � �
⇤(vk | Z) + µ

T
q � h

k

⇤(x, vk + q) , 8 k ,

where for each k, vk 2 Rm, while �
⇤(v|Z) is the support function of Z and h

k

⇤(x, v) is
the partial concave conjugate function of hk(x, z).



Example : Generalized 
Markov Inequality

• Consider trying to bound the following probability with 
respect to probabilities supported in the non-negative 
orthant with a mean of     with     as a convex set: 

• Based on Theorem 8.6, this can be measured using: 
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minimize
t,q,w

t+ qTµ

subject to t � �⇤(w|U) + 1

t � 0

q � �w

q � 0



Some intuition about the 
worst-case distribution

• We showed that the worst-case expected value problem is equivalent to: 
 
 
 

• For finite dimensional LP, it is well known that only m+1 constraints are 
needed to get an optimal solution  

• There should therefore exist a set  
for which 8.5 becomes equivalent to  
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The biggest conceptual challenge in dealing with this type of robust optimization
model is the fact that, unlike previous robust optimization models we encountered,
nature does not control a finite dimensional vector but rather a function F : B ! R
(intuitively, F : Rm

! R when F has a density function). Yet the analysis remains
quite similar to what we have seen up to this point. For any fixed decision x, we
would like to employ duality theory to reformulate the worst-case analysis problem as
an infimum over a set of additional auxiliary variables in order to reintegrate the result
of this analysis in the DRO model.

Looking more closely at the worst-case analysis problem, one might be able to
recognize that it is actually a linear program but of semi-infinite dimension (infinite
number of decision variables, and finite number of constraints). In particular, we are
interested in

maximize
F2M

Z

Z
h(x, ⇠)dF (⇠) (8.4a)

subject to

Z

Z
dF (⇠) = 1 (8.4b)

Z

Z
⇠dF (⇠) = µ , (8.4c)

where we further assume that h(x, ·) is real-valued measurable in (Rm
,B).

Based on the theory of semi-infinite conic programs (see Theorem 3.4 in [37]), one
can establish that the following semi-infinite infinite program is the dual problem and
that strong duality applies as long as the ambiguity set D(Z, µ) 6= ;, i.e. that there
exists an F 2 D(Z, µ):

minimize
r,q

µ
T
q + r (8.5a)

subject to z
T
q + r � h(x, z) , 8 z 2 Z , (8.5b)

where r 2 R and q 2 Rm are respectively the dual variables associated with constraints
(8.4b) and (8.4c). One can for instance formulate the Lagrangean equation for this
problem as:

L(F, r, q) :=

Z

Z
h(x, ⇠)dF (⇠) + r(1 �

Z

Z
dF (⇠)) + q

T (µ �

Z

Z
⇠dF (⇠))

= r + µ
T
q +

Z

Z
(h(x, ⇠) � r � q

T
⇠) dF (⇠) .

The dual problem is obtained through

sup
F

inf
r,q

L(F, r, q)  inf
r,q

sup
F

L(F, r, q) =

⇢
r + µ

T
q if h(x, z) � r � q

T
z  0 , 8 z 2 Z

1 otherwise
,

with equality being met when D(Z, µ) 6= ; and there exists an F 2 D(Z, µ).
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Theorem 8.1. : Let D(Z, µ) be a distribution set for which there exists a feasible
solution F0 2 D(Z, µ), then the moment problem (8.4) is equivalent to the following
robust optimization problem:

minimize
q

sup
z2Z

h(x, z) + (µ � z)T q . (8.6)

It is worth presenting a little more intuition about this dual problem. Indeed, one
can easily demonstrate that it provides an upper bound for the worst-case expectation
of h(x, ⇠) by considering that for any pair (q, r) that allow the a�ne function ĥ(x, ⇠) :=
q

T
⇠ + r be a global over-estimator of h(x, ⇠), it must be that

h(x, z)  q
T
z + r , 8 z 2 Z ) sup

F2D(Z,µ)
E F [h(x, ⇠)]  sup

F2D(Z,µ)
E [qT

⇠ + r]

= sup
F2D(Z,µ)

q
T E [⇠] + r

= q
T
µ+ r .

Hence, the dual problem simply attempts to find the tightest a�ne global over-estimator
of h(x, ⇠) for which it then becomes easy to evaluate the worst-case expectation (by
the linearity property of expectation). As before, the strength of duality theory stands
in establishing conditions under which this upper bound is tight.

Another valuable intuition that can be extracted from this dual problem builds upon
the fact that this is a linear program with a decision vector in Rm+1. Indeed, it is well
known that in a finite dimensional linear program, only p+ 1 constraints are actually
needed to identify any optimal solution (i.e. an optimal vertex of the polyhedron).
Assuming this is also the case for semi-infinite linear program such as problem (8.5),
one is left with the conclusion that there exists a subset Z

⇤ := {z
⇤
1 , z

⇤
2 , . . . , z

⇤
m+1} of Z

for which the following finite linear program return the same optimal value as problem
(8.5):

minimize
r,q

µ
T
q + r (8.7a)

subject to ⇠
T
q + r � h(x, z) , 8 z 2 Z

⇤
, (8.7b)

Since we assumed that h(x, z) is real-valued, this LP is feasible, hence taking once
more the dual of this problem we get that the following finite dimensional LP returns
the same optimal value as (8.4):

maximize
p2Rm+1

m+1X

i=1

pih(x, z
⇤
i
) (8.8a)

subject to
X

i

pi = 1 (8.8b)

m+1X

i=1

piz
⇤
i
= µ . (8.8c)
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i
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The intuition we get from these arguments is that there always exists a worst-case
distribution for problem (8.4) that is supported on at most m+1 points in Z, although
we do not know a priori which are these points and that these might depend on x.
Actually, this intuition is confirmed by the following theorem which can be found as
Lemma 3.1 in [41] but originally attributed to [38].

Theorem 8.2. : Let Z 2 Rm be a Borel set, and F0 be some feasible distribution ac-
cording to D(Z, µ), then problem (8.4) is equivalent to the following finite dimensional
optimization problem

maximize
p,{zi}m+1

i=1

m+1X

i=1

pih(x, zi) (8.9a)

subject to
m+1X

i=1

pi = 1 & p � 0 (8.9b)

m+1X

i=1

pizi = µ (8.9c)

zi 2 Z , 8 i = 1, . . . ,m+ 1 , (8.9d)

where p 2 Rm+1 and each zi 2 Rm.

Example 8.3. : Consider a certain step we did when proving Lemma 3.6 which re-
quired establishing a tight upper bound for E [exp(�ai⇠)] knowing that the distribution
of ⇠ is symmetric and supported on [�1, 1]. Based on this conditions, it is necessarily
the case that E [⇠] = 0 and one might instead study

sup
F2D([�1,1],0)

E [exp(�ai⇠)] .

Based on Theorem 8.2, we now know that the worst-case distribution of this problem
is supported on two points since m = 1. Furthermore, we also know based on equation
(8.6) that the bound is exactly equal to:

sup
F2D([�1,1],0)

E [exp(�ai⇠)] = inf
q

sup
z2[�1,1]

exp(�aiz) � zq .

Now since exp(�aiz) � zq is convex in z, it must be that the maximum is achieved at
either z = �1 or z = 1, hence

sup
F2D([�1,1],0)

E [exp(�ai⇠)] = inf
q

max(exp(�ai) � q ; exp(��ai) + q) .

Looking now at the minimization in q we realize that the optimum is achieved at the
intersection of both a�ne functions, namely when

exp(�ai) � q = exp(��ai) + q .



Example : Mean-variance models

• Applying Theorem 8.6 we get: 
 

• If h(x,z) is bounded below this reduces to: 
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In the case, of a convex Z and a piecewise concave h(x, z), then problem (8.10) is
equivalent to

minimize
x2X ,q

sup
z2Z

max
k

hk(x, z) + (µ � z)T q

which is itself equivalent to

minimize
x2X ,q

max
k

sup
z2Z

hk(x, z) + (µ � z)T q

so that we can represent this problem in epigraph form:

minimize
x2X ,q,t

t

subject to t � sup
z2Z

hk(x, z) + (µ � z)T q , 8 k .

By exploiting Theorem 6.2 on each of the constraints, one obtains in each case

9v 2 Rm
, t � �

⇤(v | Z) + µ
T
q � g⇤(x, v) ,

where g⇤(x, v) is the partial concave conjugate function of g(x, z) := hk(x, z) � q
T
z.

The latter can be expanded to

g⇤(x, v) := inf
z2Zh

v
T
z � hk(x, z) + q

T
z = inf

z2Zh

(v + q)T z � hk(x, z) = h
k

⇤(x, v + q) .

This completes our proof. ⇤

8.1.2 Other moment functions

One might now wonder whether more sophisticated ambiguity sets can be used instead
of D(Z, µ). In fact, Wiesemann et al. [42] show how D(Z, µ) can actually capture an
extensive list of interesting ambiguity sets.

Example 8.7. : Consider that ⇠ is a random variable known to have a mean µ, and
a variance of E [(⇠ � µ)2] = �

2. This gives rise to the following DRO problem :

minimize
x2X

sup
F2D(µ,�2)

E F [h(x, ⇠)] ,

where
D(µ, �2) := {F | P(⇠ 2 R) = 1, E [⇠] = µ, E [(⇠ � µ)2] = �

2
} .

Of course, this does not appear like a set that fits the description we have used until
now. However, one can consider a lifted space where a DRO model that fits our
assumptions will be exactly equivalent to this one. Namely, consider the lifting ⇣ =
[ ⇣1 ⇣2 ]T := [⇠ , (⇠ � µ)2]T with the following support set

Z
0 := {z

0
2 R2

| z
0
2 = (z0

1 � µ)2} .

minimize
x2X ,q1,q2�0

sup
z12R

h(x, z) + (µ� z1)q1 + (�2 � (z1 � µ)2)q2

concave in z1
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Of course, this does not appear like a set that fits the description we have used until
now. However, one can consider a lifted space where a DRO model that fits our
assumptions will be exactly equivalent to this one. Namely, consider the lifting ⇣ =
[ ⇣1 ⇣2 ]T := [⇠ , (⇠ � µ)2]T with the following support set

Z
0 := {z

0
2 R2

| z
0
2
= (z0

1
� µ)2} .

One can actually show that the following DRO problem is equivalent to the first one:

minimize
x2X

sup
F 02D(Z0,[µ , �2]T )

E F 0 [h(x, ⇣1)] .

Indeed, for any random variable ⇠ with a feasible distribution F 2 D(µ, �2), one can
construct the random variable ⇣ = (⇠, (⇠ � µ)2) for which the distribution F

0 must lie
in D(Z 0

, [µ , �
2]T ) since PF (⇣ 2 Z

0) = 1 and E F [⇣] = [µ , �
2]T . Furthermore we have

that E F [h(x, ⇣1)] = E F [h(x, ⇠)] so that

sup
F2D(µ,�2)

E F [h(x, ⇠)] = sup
F2D(µ,�2)

E F [h(x, ⇣1)]  sup
F 02D(Z0,[µ , �2]T )

E F 0 [h(x, ⇣1)] .

Alternatively, letting ⇣ be any random variable with a distribution F
0
2 D(Z 0

, [µ , �
2]T ),

we can simply consider the distribution of ⇠ := ⇣1 as being a member of D(µ, �2) since
E F 0 [⇠] = E F 0 [⇣1] = µ and E F 0 [(⇠ � µ)2] = E F 0 [(⇣1 � µ)2] = E F 0 [⇣2] = �

2. Finally, we
have that E F 0 [h(x, ⇠)] = E F 0 [h(x, ⇣1)]. so that

sup
F 02D(Z0,[µ , �2]T )

E F 0 [h(x, ⇣1)] = sup
F 02D(Z0,[µ , �2]T )

E F 0 [h(x, ⇠)]  sup
F2D(µ,�2)

E F [h(x, ⇠)] .

Next, we can use Theorem 8.4 to establish the the worst-case distribution is at
most a m+ 1 = 3 three point distribution. Furthermore, if h(x, z) is the maximum of
functions that are concave in z and additionally can be shown to be lower bounded by
�B, then Theorem 8.6 can be used to reformulate the DRO model as:

minimize
x2X ,q2R2

sup
z2Z0

h(x, z1) + (µ � z1)q1 + (�2
� z2)q2 .

This is equivalent to

minimize
x2X ,q2R2

sup
z12R

h(x, z1) + (µ � z1)q1 + (�2
� (z1 � µ)2)q2 .

Yet, since h(x, z) � �B, when q2 < 0, we have that

sup
z12R

h(x, z) + (µ � z1)q1 + (�2
� (z1 � µ)2)q2 � sup

z12R
�B + µq1 + �

2
q2 � z1q1 � q2(z1 � µ)2

= 1 (as z1 ! 1) .
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0) = 1 and E F [⇣] = [µ , �
2]T . Furthermore we have

that E F [h(x, ⇣1)] = E F [h(x, ⇠)] so that

sup
F2D(µ,�2)

E F [h(x, ⇠)] = sup
F2D(µ,�2)

E F [h(x, ⇣1)]  sup
F 02D(Z0,[µ , �2]T )

E F 0 [h(x, ⇣1)] .

Alternatively, letting ⇣ be any random variable with a distribution F
0
2 D(Z 0

, [µ , �
2]T ),

we can simply consider the distribution of ⇠ := ⇣1 as being a member of D(µ, �2) since
E F 0 [⇠] = E F 0 [⇣1] = µ and E F 0 [(⇠ � µ)2] = E F 0 [(⇣1 � µ)2] = E F 0 [⇣2] = �

2. Finally, we
have that E F 0 [h(x, ⇠)] = E F 0 [h(x, ⇣1)]. so that

sup
F 02D(Z0,[µ , �2]T )

E F 0 [h(x, ⇣1)] = sup
F 02D(Z0,[µ , �2]T )

E F 0 [h(x, ⇠)]  sup
F2D(µ,�2)

E F [h(x, ⇠)] .

Next, we can use Theorem 8.4 to establish the the worst-case distribution is at
most a m+ 1 = 3 three point distribution. Furthermore, if h(x, z) is the maximum of
functions that are concave in z and additionally can be shown to be lower bounded by
�B, then Theorem 8.6 can be used to reformulate the DRO model as:

minimize
x2X ,q2R2

sup
z2Z0

h(x, z1) + (µ � z1)q1 + (�2
� z2)q2 .

This is equivalent to

minimize
x2X ,q2R2

sup
z12R

h(x, z1) + (µ � z1)q1 + (�2
� (z1 � µ)2)q2 .

Yet, since h(x, z) � �B, when q2 < 0, we have that

sup
z12R

h(x, z) + (µ � z1)q1 + (�2
� (z1 � µ)2)q2 � sup

z12R
�B + µq1 + �

2
q2 � z1q1 � q2(z1 � µ)2

= 1 (as z1 ! 1) .



Example: Support-mean-
bounded covariance model

• Solution: 
 

• See Wiesemann et al. [42] for many more moment models
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Example 8.8. : Consider that one has information about the support Z, the mean
µ, and an upper bound on the second order moment matrix of the type E [⇠⇠T ] � ⌃
where A � B refers to the fact that B�A is positive semi-definite, i.e. zT (B�A)z � 0
for all z 2 Rm. This gives rise to the following DRO problem :

minimize
x2X

sup
F2D(Z,µ,⌃)

E F [h(x, ⇠)] ,

where
D(Z, µ,⌃) := {F | P(⇠ 2 Z) = 1, E [⇠] = µ, E [⇠⇠T ] � ⌃} .

Of course, this does not appear like a set that fits the description we have used until
now. However, one can consider a lifted space where a DRO model that fits our
assumptions will be exactly equivalent to this one. Namely, consider the lifting ⇣ 2

Rm
⇥ Rm⇥m with the following support set

Z
0 := {(⇣1, ⇣2) 2 Rm

⇥ S
m⇥m

| ⇣1 2 Z, ⇣2 ⌫ ⇣1⇣
T

1 } , (8.11)

where S
m⇥m is the space of all m ⇥ m symmetric matrices.

Similarly as was done in the previous example, one can consider the DRO model
to be equivalent to

minimize
x2X

sup
F2D(Z0,(µ,⌃))

E F [h(x, ⇣1)] .

In this context, since we are imposing m + m(m + 1)/2 di↵erent moments (i.e. only
the diagonal and lower triangle of ⌃ count as di↵erent moment constraints), we know
that the worst-case distribution will be supported on (1/2)(m + 1)(m + 2) points.
Furthermore, we can reformulate the DRO as

minimize
x2X ,q,Q

sup
(z1;Z2):z12Z, Z2⌫z1z

T

1

h(x, z1) + (µ � z1)
T
q + (⌃ � Z2) • Q ,

where A•B :=
P

ij
AijBij indicates the Frobenius inner product, and where Q 2 S

m⇥m

and Z2 2 S
m⇥m are symmetric matrices. This problem will reduce to the following if

h(x, z) := maxk hk(x, z):

minimize
x2X ,q,Q,r

r

subject to r � sup
(z1;Z2):z12Z, Z2⌫z1z

T

1

hk(x, z1) + (µ � z1)
T
q + (⌃ � Z2) • Q , 8 k .

Looking more closely at the sup
Z2⌫z1z

T

1
�Z2 •Q part of the constraint, we realize that if

Q is not positive semi-definite, then the supremum can reach 1 since Z2 is unbounded
above. We must therefore have that Q ⌫ 0, for the same price we also get that the
optimum is always achieved at Z2 = z1z

T

1 . The DRO therefore reduces to

minimize
x2X ,q,Q,r

r (8.12a)

subject to r � sup
z12Z

hk(x, z1) + (µ � z1)
T
q + ⌃ • Q � z

T

1 Qz1 , 8 k (8.12b)

Q ⌫ 0 . (8.12c)

minimize
x2X ,q,Q⌫0

sup
z2Z

h(x, z) + (µ� z)T q + ⌃ •Q� zTQz



Accounting for moment 
uncertainty

• Data-driven moment estimation leads to moment uncertainty 

• DRO problem might instead take the form: 
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Each constraint in this latter reformulation is a non-linear robust constraint with the
right properties to be tackled by the theory presented in Chapter 6 when each hk(x, z)
is convex in x and concave in z.

8.1.3 Accounting for moment uncertainty

When moments of distribution are estimated based on historical data, it is common
to consider that the moments are not precisely known but are rather assumed to lie
in some confidence region U . In this context the distributionally robust model should
consider as candidate worst-case distribution any distribution which mean lies in U ,
thus giving rise to the following DRO model:

minimize
x2X

sup
µ2U ,F2D(Z,µ)

E F [h(x, z)] . (8.13a)

Corollary 8.9. : Let D(Z, µ) be a distribution set and U 2 Rm be a bounded uncer-
tainty set for the moment vector µ. Given that there exists a feasible pair (µ0, F0) for
which µ0 2 U and F0 2 D(Z, µ0), the DRO problem presented in (8.13) is equivalent
to the following robust optimization problem:

minimize
x2X ,q

sup
z2Z

h(x, z) � z
T
q + �

⇤(q | U) . (8.14a)

Moreover, the problem can be reformulated as follows when Z is a convex set and
h(x, z) := maxk hk(x, z) where each hk(x, z) is a concave function:

minimize
x2X ,q,{vk}k,t

t+ �
⇤(q | U)

subject to t � �
⇤(vk | Z) � h

k

⇤(x, vk + q) , 8 k ,

where for each k, vk 2 Rm, while �
⇤(v|Z) is the support function of Z and h

k

⇤(x, v) is
the partial concave conjugate function of hk(x, z).

Proof. This result follows almost directly from theorems 8.1 and 8.6. From the former,
we can establish that

sup
µ2U ,F2D(Z,µ)

E F [h(x, z)] = max
µ2U

inf
q

sup
z2Z

h(x, z) + (µ � z)T q

= max
µ2U

inf
q

µ
T
q + sup

z2Z
h(x, z) � z

T
q

= inf
q

max
µ2U

µ
T
q + h(x, z) � z

T
q

= inf
q

sup
z2Z

�
⇤(q | U) + h(x, z) � z

T
q ,

where we employed Sion’s minimax theorem which exploits the fact that U is bounded
and that µ

T
q + sup

z2Z h(x, z) � z
T
q is a�ne in µ and convex in q. Note that the

introduction of the support function simply follows from its definition. The second
reformulation follows from Theorem 8.6 which can exploit the fact that h(x, z) would
be piecewise concave in z. ⇤
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Mean-Covariance Uncertainty

• The parameters can be chosen such that this set has 
high probability of containing the true distribution

140 CHAPTER 8. DISTRIBUTIONALLY ROBUST OPTIMIZATION

Example 8.10. : In [24], the authors explain how independently and identically dis-
tributed samples {⇠i}

M

i=1 from F can be used to construct the following uncertainty
set:

D(Z, µ̂, ⌃̂, �1, �2) =

8
<

:F 2 M

������

P(⇠ 2 Z) = 1
(E [⇠] � µ̂)T ⌃̂�1(E [⇠] � µ̂)  �1

E [(⇠ � µ̂)(⇠ � µ̂)T ] � (1 + �2)⌃̂

9
=

; ,

where the second constraint imposes that the mean of ⇠ be located inside some con-
fidence region described as an ellipsoid centered at µ̂, the empirical estimate of the
mean, and with a shape that is defined through ⌃̂ the empirical covariance matrix.
The third constraint is a bit more complicated to parse since it imposes a linear ma-
trix inequality (in the form of an upper bound) on the centered second order moment
matrix of ⇠. Note that this is not exactly equivalent to imposing an LMI upper bound
on the covariance matrix of ⇠ unless �1 = 0 (since then E [⇠] = µ̂). Nevertheless, it
allows one to control how far the realization might be from µ̂ on average.

One can quickly recognize in this context that the DRO problem becomes:

minimize
x2X

max
(µ,⌃)2U

sup
F2D(Z,(µ,⌃))

E F [h(x, ⇣)] ,

where

U :=

⇢
(µ,⌃) 2 Rm

⇥ Rm⇥m

����
(µ � µ̂)T ⌃̂�1(µ � µ̂)  �1

⌃ � (1 + �2)⌃̂+ µ̂µ
T + µµ̂

T
� µ̂µ̂

T

�
.

Based on these considerations, one can exploit corollary 8.9 and the results of
Example 8.8 to claim that the DRO problem is equivalent to

minimize
x2X ,q

sup
z2Z0

h(x, z1) � z
T

1 q � Z2 • Q+ �
⇤((q,Q) | U)

where Z
0 follows the definition in equation (8.11). Given that we already performed the

analysis for sup
z2Z0 h(x, z1)�z

T

1 q�Z2•Q, we are left with characterizing �
⇤((q,Q) | U).

To do so, we will describe the U set as the intersection of two sets:

U1 := {(µ,⌃) 2 Rm
⇥ S

m⇥m
| (µ � µ̂)T ⌃̂�1(µ � µ̂)  �1} ,

and
U2 := {(µ,⌃) 2 Rm

⇥ S
m⇥m

|⌃ � (1 + �2)⌃̂+ µ̂µ
T + µµ̂

T
� µ̂µ̂

T
} .

In the first case, we have that µ := µ̂+ ⌃̂1/2
w where kwk2 

p
�1. Based on Table 6.1

and theorem 6.7, we can use the fact that µ = ⌃1/2
µ

0 + µ̂ for some kµ
0
k2 

p
�1 to

conclude that
�

⇤(q,Q | U1) := µ̂
T
q +

p
�1k⌃̂

1/2
qk2 + 1{Q = 0} ,

where 1{Q = 0} is the indicator function that returns 0 if satisfied and 1 otherwise.

�⇤([vT1 vT2 ] | Z1 ⇥ Z2) = �⇤(v1 |Z1) + �⇤(v2 | Z2)We will exploit :

minimize
x2X ,q,Q⌫0

sup
z2Z

h(x, z)� zT q � zTQz

+ ((1 + �2)⌃̂� µ̂µ̂T ) •Q+ µ̂T q +
p
�1k⌃̂1/2(q + 2Qµ̂)k2

<latexit sha1_base64="bJYwt7ngAzgAkNE7IWipfXeCv0k="> qnkPjfhyFP98Rfae+sW</latexit>



Exercise 8.1 + 8.2

• Hint: Use Theorem 8.6 and Corollary 8.9
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6.2 Reference Tables from Ben-Tal et al. 2015

Table 6.1: Table of reformulations for uncertainty sets (Table 1 in [8])

Uncertainty region Z Support function �
⇤(v|Z)

Box kzk1  ⇢ ⇢kvk1

Ball kzk2  ⇢ ⇢kvk2

Polyhedral b � Bz � 0 infw�0:BT w=v b
T
w

Cone b � Bz 2 C infw2C⇤:BT w=v b
T
w

KL-Divergence
P

l
zl ln

⇣
zl

z
0
l

⌘
 ⇢ infu�0

P
l
z

0

l
ue

(vl/u)�1 + ⇢u

Geometric prog.
P

i
↵ie

(di)
T

z
 ⇢ infu�0, w�0:

P
i
diwi=v

P
i
{wi ln

⇣
wi

↵iu

⌘
� wi} + ⇢u

Intersection Z = \iZi inf{wi}:
P

i
wi=v

P
i
�

⇤(wi
|Zi)

Example
Zk = {z|kzkk  ⇢k}

k = 1, 2
inf(w1,w2):w1+w2=v ⇢1kw

1
k1 + ⇢2kw

2
k2

Minkowski sum Z = Z1 + · · · + ZK

P
i
�

⇤(v|Zi)

Example
Z1 = {z | kzk1  ⇢1}

Z2 = {z | kzk2  ⇢2}
⇢1kvk1 + ⇢2kvk2

Convex hull Z = conv(Z1, . . . ,ZK) maxi �
⇤(v|Zi)

Example
Z1 = {z | kzk1  ⇢1}

Z2 = {z | |z � z
0
k2  ⇢2}

max{⇢1kvk1, (z0)Tv + ⇢2kv|k2}
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Table 6.2: Table of reformulations for constraint functions (Table 2 in [8])

Constraint function g(x, z) Partial concave conjugate g⇤(x, v)

Linear in z z
T
g(x)

⇢
0 if v = g(x)

�1 otherwise

Concave in z,
separable in z and x

g(z)Tx sup{si}n
i=1:

P
n

i=1 si=v

P
i
xi(gi)⇤(si

/xi)

Example �
P

i

1

2
(zT

Qiz)xi sup{si}n
i=1:

P
n

i=1 si=v
�

1

2

P
n

i=1

(s
i
)
T

Q
�1
i

s
i

xi

Sum of functions
P

i
gi(x, z) sup{si}n

i=1:
P

i
si=v

P
i
(gi)⇤(x, si)

Sum of separable
functions

P
i
gi(x, zi)

P
n

i=1
(gi)⇤(x, vi)

Example
�

P
m

i=1
x

zi

i
,

xi > 1, 0  z  1

( P
m

i=1

⇣
vi

ln xi

ln �vi

ln xi

�
vi

ln xi

⌘
if v  0

�1 otherwise



Wasserstein distance based models 
(see separate set of slides by D. Kuhn) 
(see an example of implementation in 

RSOME documentation)

https://xiongpengnus.github.io/rsome/example_dro_nv

