
Solutions to Exercises

Solution to Exercise 2.1: One might consider that the constraint in this expression
is equivalent to

(
X

i

✓iz̄i)
T
x  b � a

T
x , 8 ✓ 2 U ,

where U := {✓ 2 RK
| ✓ � 0,

P
i
✓i = 1}. This constraint is further equivalent to

(Z✓)Tx  b � a
T
x , 8 ✓ 2 U ,

where Z := [ z̄1 . . . z̄K ]. this is a form where theorem 2.7 can be applied, considering
that J = 1, p0 := c, P1 := Z, r1 = �1, and W and v are as follow:

W :=

2

4
1

T

K

�1
T

K

�I

3

5 v :=

2

4
1

�1
0K

3

5 .

This gives us the following LP

maximize
x,µ1,µ2,�

c
T
x

subject to µ1 � µ2  b � a
T
x

µ1 � µ2 � � = ZT
x

µ1 � 0, µ2 � 0,� � 0

0  x  1
nX

i=1

xi  1 ,

where µ1 2 R, µ2 2 R, and � 2 RK .
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We can then replace the expression µ1 � µ2 with µ 2 R which leaves us with

maximize
x,µ,�

c
T
x

subject to µ  b � a
T
x

µ � � = ZT
x

� � 0

0  x  1
nX

i=1

xi  1 ,

Then, since � is only involved in one equality constraint other than the non-negativity
one, we can replace that equality constraint with

µ � ZT
x .

This leaves us with the final option of replacing the µ with the largest amount it can
take which is b � a

T
x. We get the constraint

b � a
T
x � ZT

x ,

which is equivalent to
z̄

T

i
x  b � a

T
x , 8 i = 1, . . . , K .

In conclusion, the reformulation reduces to

maximize
x

c
T
x

subject to (a+ z̄i)
T
x  b , 8 i = 1, . . . , K

0  x  1
nX

i=1

xi  1 ,

which is exactly saying that x must satisfy the constraint for each scenarios z̄i. Recall
that this is what we did in example 2.1. We actually just proved a version of the well
known principle of robust optimization which states that the robust constraint

g(x, z)  0 , 8 z 2 Z

is equivalent to the robust constraint

g(x, z)  0 , 8 z 2 ConvexHull(Z) ,

when g(x, z) is a�ne with respect to z.
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Solution to Exercise 2.2: In order to employ theorem 2.7, we need to describe the
uncertainty set in the form Wz  v which is not currently the case. Our first step will
therefore be to raise the uncertainty space in R2m as follow

Z
0(�) :=

(
z

0
2 R2m

����� 9 z 2 Rm
, s 2 Rm

, z
0 = [ zT

s
T ]T , �s  z  s, s  1,

X

i

si  �

)
.

In this uncertainty space, the robust constraint is equivalent to

(a+ [ I 0 ]z0)Tx  b , 8 z
0
2 Z

0(�) .

We can therefore consider that J = 1, p1 = a, P1 = [ I 0 ], q1 = 0, r1 = b, and that

W :=

2

664

�I �I

I �I

0 I

0 1m

3

775 v :=

2

664

0m

0m

1m

�

3

775

Hence, the reduced robust counterpart takes the following form

maximize
x,�1,�2,�3,�4

c
T
x

subject to a
T
x+ 1

T

m
�3 + ��4  b

x = �2 � �1

�3 + �4 = �1 + �2

�1 � 0 ,�2 � 0 ,�3 � 0 ,�4 � 0

0  x  1
nX

i=1

xi  1 ,

where �1 2 Rm, �2 2 Rm, �3 2 Rm, and �4 2 R.

Solution to Exercise 2.3: We employ a similar approach as in exercise 2.1, meaning
that we first reformulate in terms of ✓ being the uncertain vector. This leads to the
following robust counterpart:

maximize c
T
x

subject to (a+ Z✓)Tx  b , 8 ✓ 2 U

0  x  1
nX

i=1

xi  1 ,
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where U := {✓ 2 RK
| ✓ � 0,

P
K

i=1
✓i = 1, ✓ 

1

K↵
}. To apply theorem 2.7, we need

to characterize the di↵erent elements of the LP-RC. Specifically, we say that q = a,
P = Z, r = b, p = 0, and finally that

W :=

2

664

�I

I

1
T

K

�1
T

K

3

775 & v :=

2

664

0K

1

K↵
1K

1
�1

3

775 .

This leads to the following LP reformulation

maximize
x,�1,�2,�3,�4

c
T
x

subject to a
T
x+

1

K↵
1

T

K
�2 + �3 � �4  b

ZT
x = ��1 + �2 + 1K�3 � 1K�4

�1 � 0 ,�2 � 0 ,�3 � 0 ,�4 � 0

0  x  1
nX

i=1

xi  1 ,

where �1 2 RK , �2 2 RK , �3 2 R, and �4 2 R. Given that �3 and �4 always appear in
the expression �3 � �4, we can simply replace the expression with s := �3 � �4. Also,
given that �1 is only involved in one constraint, it can be removed from the problem
after replacing the equality constraint with an inequality in the appropriate direction.
Overall, we get the following reduced LP:

maximize
x,�2,s

c
T
x

subject to a
T
x+

1

K↵
1

T

K
�2 + s  b

ZT
x  �2 + 1Ks

�2 � 0

0  x  1
nX

i=1

xi  1 ,
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