
Chapter 2:
Robust Counterpart of Linear Programs

General robust LP

We assume that the nominal problem is an LP

And that all functions are affine in « z »

In other words, we are left with the following LP-RC

Chapter 2

Robust Counterpart of Linear

Programs

In this chapter, we assume that the functions that need to be “robustified” are linear functions
of both the decision variables and the vector of parameters. Namely, we investigate the robust
counter part model presented in problem (1.1) and repeated below

(Robust counterpart) maximize
x

min
z2Z

h(x, z)

subject to gj(x, z)  0 , 8 z 2 Z, , 8 j = 1, ..., J .

and assume that the di↵erent functions that compose this model can be expressed as

h(x, z) := c(z)T
x + d(z)

gj(x, z) := aj(z)T
x � bj(z) ,

where x 2 Rn, z 2 Rm, and where each function c(z), d(z), aj(z) and bj(z) is an a�ne
function of z. In other words, it must be possible to describe each of these functions using
the following forms

c(z) := (P0z + p0) & d(z) = q
T
0 z + r0 ,

aj(z) := (Pjz + pj) & bj(z) = q
T
j z + rj ,

for some Pj 2 Rn⇥m, some pj 2 Rn, some qj 2 Rm and some rj 2 R.
The robust counterpart would then take the form:

(LP-RC) maximize
x

min
z2Z

z
T
P

T
0 x + q

T
0 z + p

T
0 x + r0 (2.1a)

subject to z
T
P

T
j x + p

T
j x  q

T
j z + rj , 8 z 2 Z, , 8 j = 1, ..., J . (2.1b)

This model is not amenable to readily available mathematical programming resolution
software as it is not yet described in finite dimensional form. Indeed, each constraint indexed
with i must be checked for all realization of z in Z. Similarly, the objective function is not
expressed in closed form; in order to evaluate it, one must search for the instance of z that
achieves the minimum value.

23

Chapter 2

Robust Counterpart of Linear

Programs

In this chapter, we assume that the functions that need to be “robustified” are linear functions
of both the decision variables and the vector of parameters. Namely, we investigate the robust
counter part model presented in problem (1.1) and repeated below

(Robust counterpart) maximize
x

min
z2Z

h(x, z)

subject to gj(x, z)  0 , 8 z 2 Z, , 8 j = 1, ..., J .

and assume that the di↵erent functions that compose this model can be expressed as

h(x, z) := c(z)T
x + d(z)

gj(x, z) := aj(z)T
x � bj(z) ,

where x 2 Rn, z 2 Rm, and where each function c(z), d(z), aj(z) and bj(z) is an a�ne
function of z. In other words, it must be possible to describe each of these functions using
the following forms

c(z) := (P0z + p0) & d(z) = q
T
0 z + r0 ,

aj(z) := (Pjz + pj) & bj(z) = q
T
j z + rj ,

for some Pj 2 Rn⇥m, some pj 2 Rn, some qj 2 Rm and some rj 2 R.
The robust counterpart would then take the form:

(LP-RC) maximize
x

min
z2Z

z
T
P

T
0 x + q

T
0 z + p

T
0 x + r0 (2.1a)

subject to z
T
P

T
j x + p

T
j x  q

T
j z + rj , 8 z 2 Z, , 8 j = 1, ..., J . (2.1b)

This model is not amenable to readily available mathematical programming resolution
software as it is not yet described in finite dimensional form. Indeed, each constraint indexed
with i must be checked for all realization of z in Z. Similarly, the objective function is not
expressed in closed form; in order to evaluate it, one must search for the instance of z that
achieves the minimum value.

23

Chapter 2

Robust Counterpart of Linear

Programs

In this chapter, we assume that the functions that need to be “robustified” are linear functions
of both the decision variables and the vector of parameters. Namely, we investigate the robust
counter part model presented in problem (1.1) and repeated below

(Robust counterpart) maximize
x

min
z2Z

h(x, z)

subject to gj(x, z)  0 , 8 z 2 Z, , 8 j = 1, ..., J .

and assume that the di↵erent functions that compose this model can be expressed as

h(x, z) := c(z)T
x + d(z)

gj(x, z) := aj(z)T
x � bj(z) ,

where x 2 Rn, z 2 Rm, and where each function c(z), d(z), aj(z) and bj(z) is an a�ne
function of z. In other words, it must be possible to describe each of these functions using
the following forms

c(z) := (P0z + p0) & d(z) = q
T
0 z + r0 ,

aj(z) := (Pjz + pj) & bj(z) = q
T
j z + rj ,

for some Pj 2 Rn⇥m, some pj 2 Rn, some qj 2 Rm and some rj 2 R.
The robust counterpart would then take the form:

(LP-RC) maximize
x

min
z2Z

z
T
P

T
0 x + q

T
0 z + p

T
0 x + r0 (2.1a)

subject to z
T
P

T
j x + p

T
j x  q

T
j z + rj , 8 z 2 Z, , 8 j = 1, ..., J . (2.1b)

This model is not amenable to readily available mathematical programming resolution
software as it is not yet described in finite dimensional form. Indeed, each constraint indexed
with i must be checked for all realization of z in Z. Similarly, the objective function is not
expressed in closed form; in order to evaluate it, one must search for the instance of z that
achieves the minimum value.

23

Chapter 2

Robust Counterpart of Linear

Programs

In this chapter, we assume that the functions that need to be “robustified” are linear functions
of both the decision variables and the vector of parameters. Namely, we investigate the robust
counter part model presented in problem (1.1) and repeated below

(Robust counterpart) maximize
x

min
z2Z

h(x, z)

subject to gj(x, z)  0 , 8 z 2 Z, , 8 j = 1, ..., J .

and assume that the di↵erent functions that compose this model can be expressed as

h(x, z) := c(z)T
x + d(z)

gj(x, z) := aj(z)T
x � bj(z) ,

where x 2 Rn, z 2 Rm, and where each function c(z), d(z), aj(z) and bj(z) is an a�ne
function of z. In other words, it must be possible to describe each of these functions using
the following forms

c(z) := (P0z + p0) & d(z) = q
T
0 z + r0 ,

aj(z) := (Pjz + pj) & bj(z) = q
T
j z + rj ,

for some Pj 2 Rn⇥m, some pj 2 Rn, some qj 2 Rm and some rj 2 R.
The robust counterpart would then take the form:

(LP-RC) maximize
x

min
z2Z

z
T
P

T
0 x + q

T
0 z + p

T
0 x + r0 (2.1a)

subject to z
T
P

T
j x + p

T
j x  q

T
j z + rj , 8 z 2 Z, , 8 j = 1, ..., J . (2.1b)

This model is not amenable to readily available mathematical programming resolution
software as it is not yet described in finite dimensional form. Indeed, each constraint indexed
with i must be checked for all realization of z in Z. Similarly, the objective function is not
expressed in closed form; in order to evaluate it, one must search for the instance of z that
achieves the minimum value.

23

NP-hardness for general
uncertainty sets

• Take the robust counterpart optimization problem

• Verifying for a fixed « x » whether the following
claim is true is NP-hard in general, and in particular
when the uncertain vector contains integer
variables

CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS 28

to constitute a “certificate” that x actually satisfies

z
T
x  b � a

T
x , 8 z 2 Z .

This is easily verifiable, since for such a � we have that

z
T
x = z

T
W

T
�  v

T
�  b � a

T
x since Wz  v and � � 0 .

The aspect that is more surprising is that searching through these types of certificates is
su�cient, i.e. if no such � certificate is found than x must be infeasible, in other words “it is
not robust”.

Example 2.5. : Consider the robust optimization problem:

maximize
x

c
T
x

subject to (a + z)T
x  b , 8 z 2 Z ,

where Z follows assumption 2.2. This problem is equivalent to solving

maximize
x,�

c
T
x

subject to a
T
x + v

T
�  b

W
T
� = x

� � 0

In this problem, we are searching for both an x that achieves large objective value, and for
a certificate � that guarantees that x satisfies the robust constraint. Note that this problem
has the same numerical structure as a problem in which we would consider z to be known,
namely a linear program of slightly larger dimension.

In particular, say we are interested in the following “box” uncertainty set:

Z := {z 2 Rn | z̄�  z  z̄
+} ,

then we need to consider that

W =


I

�I

�
, v =


z̄
+

�z̄
�

�
.

Hence, the reformulated problem will look like:

maximize
x,�+,��

c
T
x

subject to a
T
x + z̄

+T
�

+ � z̄
�T

�
�  b

�
+ � �

� = x

�
+ � 0 �

� � 0

This reformulation is implemented using ROME in the Matlab file “SimpleExample.m”.

zTx  b� aTx , 8 z 2 Z , max
z2Z

zTx  b� aTx
<latexit sha1_base64="7IcD4jkiHHwz3sWNhEB1jBhCZFI=">AAAIenicjVXbbtNAEJ20QEO5tfDIi9UIcQtRUiqBVCFVUBBIPBTUloi6BNvZpEt9SW2HprHyk7zxB/AHPPDAmYmTOkmTYCvZ2bNnzszszXbL1VFcLv/MLSxeunxlKX91+dr1Gzdvraze3o+CduioPSdwg7BqW5Fyta/2Yh27qtoKleXZrvpkH7/i8U/fVRjpwN+Nz1rq0LOavm5ox4oB1Vbc7pfdjumqE8N+YsE0zM2iuWk2gtByXbPYNbVvelZ85Fhu8rmHkU3zvWrEoW4exVYYBqcCeVanloxxe0ZX9IbaRqe2UiiXyvIYk0YlNQqUPjvB6mJCJtUpIIfa5JEin2LYLlkU4T2gCpWpBeyQEmAhLC3jinq0DN82WAoMC+gx/pvoHaSojz5rRuLtIIqLXwhPg+7BJwAvhM3RDBlvizKj07QT0eTcztDaVEz7HtqYjob9BtS4lmiI8KgnsadnHcPvuWSr4d0ShOtw0pzbUj/naGTyj6HQAsZ2HeMhbEc8BzNqiE8kVfIsWjL+S5iMct9JuW36DWz63LJSLOqhjPUjF9OMeIVYX6NlzJN4TannBa1TCT+2uUbWCyRH9jmTFeW4PpBTmS8lilzHI/BHkR6Q3TFklncLdiA5RpKdlhVilZ0pI/1s6lBooH1NHamVZy4h3reDNbfxGhjvpRkMPPq69oXsnQm2J/Oipe3KTjv34ey4HwIxJpiTShZy/T+lUea4UoQ9YMMvSGvoe/XRb+lcGKJug9MBx5C3N+Syb29kZRxZc47sIw6raomcpDYrauwThV9RtGZ772Oc74lDUWDElpNeH55R7hlUAKc3V60jmbBqIvZsdjVlD2aXT5cLpDrXU2XiqLnscoZdnsuuZNiVuexGOvdv5jK3sS58j11c8/Zcf2+4Hp3MmmV3D+84BztHy50fpbvyfO2WZV+pqRE+Duc1e9oS4PNyO8GeDuRWeycVDrL7ipej38c7W4FPRWt4B2brq1AN7YHoHPYzwZeyMv5dnDT210uVp6X1DxuFrZfpNzNPd2mNHkDpGW3RW9wje8jlB/3J5XILS3/za/mH+cd96kIu9blDI09+4x+Nfr+F</latexit>

Scenario based uncertainty
• Consider the following robust counterpart 

 
 
 
 
with scenario based uncertainty 
 

• Then, one can reduce the problem to 
 
 
 

CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS 28

to constitute a “certificate” that x actually satisfies

z
T
x  b � a

T
x , 8 z 2 Z .

This is easily verifiable, since for such a � we have that

z
T
x = z

T
W

T
�  v

T
�  b � a

T
x since Wz  v and � � 0 .

The aspect that is more surprising is that searching through these types of certificates is
su�cient, i.e. if no such � certificate is found than x must be infeasible, in other words “it is
not robust”.

Example 2.5. : Consider the robust optimization problem:

maximize
x

c
T
x

subject to (a + z)T
x  b , 8 z 2 Z ,

where Z follows assumption 2.2. This problem is equivalent to solving

maximize
x,�

c
T
x

subject to a
T
x + v

T
�  b

W
T
� = x

� � 0

In this problem, we are searching for both an x that achieves large objective value, and for
a certificate � that guarantees that x satisfies the robust constraint. Note that this problem
has the same numerical structure as a problem in which we would consider z to be known,
namely a linear program of slightly larger dimension.

In particular, say we are interested in the following “box” uncertainty set:

Z := {z 2 Rn | z̄�  z  z̄
+} ,

then we need to consider that

W =


I

�I

�
, v =


z̄
+

�z̄
�

�
.

Hence, the reformulated problem will look like:

maximize
x,�+,��

c
T
x

subject to a
T
x + z̄

+T
�

+ � z̄
�T

�
�  b

�
+ � �

� = x

�
+ � 0 �

� � 0

This reformulation is implemented using ROME in the Matlab file “SimpleExample.m”.

30 CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS

constraint indexed with i must be checked for all realization of z in Z. Similarly, the
objective function is not expressed in closed form; in order to evaluate it, one must
search for the instance of z that achieves the minimum value.

For simplicity, we will start with a single robust constraint so that we have in hand
a constraint that takes the form:

z
T
P

T
x+ p

T
x  q

T
z + r , 8 z 2 Z

where we dropped the indexed notation for simplicity.
Let’s initially look at the case where P = I, p = a, Q = 0, r = b. This reduces to

(a+ z)Tx  b , 8 z 2 Z , (2.2)

which is perhaps the most famous version of a robust constraint.
The di�culty associated to treating this constraint is now entirely linked to the

structure of Z. Indeed, given a fixed x, we are asked to verify whether or not

9z 2 Z, z
T
x � b � a

T
x

if so then x would be infeasible. For a general uncertainty set Z (and in particular
those that impose that z be integer), this question is known to be NP-complete (see
NP-completeness of integer programming in [25]), meaning that we cannot expect to
tackle problems where the vector of parameters would have a size larger than 10 or 20.
On the other hand, if Z is simply a set of K scenarios for z, namely z 2 {z̄1, z̄2, ..., z̄K},
then this verification is straightforward as shown in the following example.

Example 2.1. : Consider the case where Z := {z̄1, z̄2, ..., z̄K} and we wish to retrieve
a tractable representation of the constraint:

z
T
x  b � a

T
x , 8 z 2 Z .

In this case, one simply need to check each member of Z. Consequently, in this simple
situation, the robust counterpart constraint (2.2) can be reformulated as:

z̄
T
i x  b � a

T
x , 8i = 1, ..., K ,

or similarly

(a+ z̄i)
T
x  b , 8i = 1, ..., K .

Note that in most practical contexts, we are interested in more than a finite set of
scenarios (or if so it would be in a set of scenario of very large size). For this reason,
we will first assume that Z is a bounded polyhedron and later work with convex
uncertainty sets that are defined with a single convex inequality.

CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS 28

to constitute a “certificate” that x actually satisfies

z
T
x  b � a

T
x , 8 z 2 Z .

This is easily verifiable, since for such a � we have that

z
T
x = z

T
W

T
�  v

T
�  b � a

T
x since Wz  v and � � 0 .

The aspect that is more surprising is that searching through these types of certificates is
su�cient, i.e. if no such � certificate is found than x must be infeasible, in other words “it is
not robust”.

Example 2.5. : Consider the robust optimization problem:

maximize
x

c
T
x

subject to (a + z)T
x  b , 8 z 2 Z ,

where Z follows assumption 2.2. This problem is equivalent to solving

maximize
x,�

c
T
x

subject to a
T
x + v

T
�  b

W
T
� = x

� � 0

In this problem, we are searching for both an x that achieves large objective value, and for
a certificate � that guarantees that x satisfies the robust constraint. Note that this problem
has the same numerical structure as a problem in which we would consider z to be known,
namely a linear program of slightly larger dimension.

In particular, say we are interested in the following “box” uncertainty set:

Z := {z 2 Rn | z̄�  z  z̄
+} ,

then we need to consider that

W =


I

�I

�
, v =


z̄
+

�z̄
�

�
.

Hence, the reformulated problem will look like:

maximize
x,�+,��

c
T
x

subject to a
T
x + z̄

+T
�

+ � z̄
�T

�
�  b

�
+ � �

� = x

�
+ � 0 �

� � 0

This reformulation is implemented using ROME in the Matlab file “SimpleExample.m”.

30 CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS

constraint indexed with i must be checked for all realization of z in Z. Similarly, the
objective function is not expressed in closed form; in order to evaluate it, one must
search for the instance of z that achieves the minimum value.

For simplicity, we will start with a single robust constraint so that we have in hand
a constraint that takes the form:

z
T
P

T
x+ p

T
x  q

T
z + r , 8 z 2 Z

where we dropped the indexed notation for simplicity.
Let’s initially look at the case where P = I, p = a, Q = 0, r = b. This reduces to

(a+ z)Tx  b , 8 z 2 Z , (2.2)

which is perhaps the most famous version of a robust constraint.
The di�culty associated to treating this constraint is now entirely linked to the

structure of Z. Indeed, given a fixed x, we are asked to verify whether or not

9z 2 Z, z
T
x � b � a

T
x

if so then x would be infeasible. For a general uncertainty set Z (and in particular
those that impose that z be integer), this question is known to be NP-complete (see
NP-completeness of integer programming in [25]), meaning that we cannot expect to
tackle problems where the vector of parameters would have a size larger than 10 or 20.
On the other hand, if Z is simply a set of K scenarios for z, namely z 2 {z̄1, z̄2, ..., z̄K},
then this verification is straightforward as shown in the following example.

Example 2.1. : Consider the case where Z := {z̄1, z̄2, ..., z̄K} and we wish to retrieve
a tractable representation of the constraint:

z
T
x  b � a

T
x , 8 z 2 Z .

In this case, one simply need to check each member of Z. Consequently, in this simple
situation, the robust counterpart constraint (2.2) can be reformulated as:

z̄
T
i x  b � a

T
x , 8i = 1, ..., K ,

or similarly

(a+ z̄i)
T
x  b , 8i = 1, ..., K .

Note that in most practical contexts, we are interested in more than a finite set of
scenarios (or if so it would be in a set of scenario of very large size). For this reason,
we will first assume that Z is a bounded polyhedron and later work with convex
uncertainty sets that are defined with a single convex inequality.

Polyhedral uncertainty
2.1. POLYHEDRAL UNCERTAINTY 31

2.1 Polyhedral Uncertainty

In this section, we consider that uncertainty about the vector of parameters takes the
form of a polyhedral set defined as follows.

Assumption 2.2. : The uncertainty set Z is a non-empty and bounded polyhedron
that can be defined according to

Z := {z 2 Rm
|w

T
i z  vi , 8 i = 1, ..., s} ,

where for each i = 1, ..., s, we have that wi 2 R1⇥m and vi 2 R capture a facet of the
polyhedron through the expression w

T
i z = vi. Moreover, since Z is non-empty, there

must exist a z0 2 Z and since it is bounded there must exist some M > 0 such that
Z = Z \ {z 2 Rm

| � M  z  M}.

Under assumption 2.2, verifying whether a fixed x satisfies constraint (2.2) is equiv-
alent to verifying whether the maximum of the optimal value of the following LP is
smaller or equal to b � a

T
x.

maximize
z

x
T
z (2.3a)

subject to Wz  v (2.3b)

where W = [w1 . . . ws]T is the matrix in Rs⇥m which rows are composed of each
wi.

Theorem 2.3. :(LP Duality see Chapter 4 of [16]) Under assumption 2.2, the optimal
value of linear program (2.3) is equal to the optimal value of the following dual problem

minimize
�

v
T
� (2.4a)

subject to W
T
� = x (2.4b)

� � 0 (2.4c)

where � 2 Rs. Moreover, problem (2.4) has a feasible solution.

Proof. Here is how one generally applies duality to replace a maximization problem
with a minimization problem. Let us call the optimal value of problem (2.3). First,
we will demonstrate how to obtain the dual problem which always achieves a larger
value than , then we will employ Farkas lemma to guarantee that the two values are
the same, and furthermore that the dual problem is feasibled.

Step #1: Obtaining the dual problem Let’s express a relaxed version of problem
(2.3), where we have moved the constraints to the objective function:

⌥(�) := max
z

x
T
z + �

T (v � Wz) .

w1

v1/w1,1


>

w2

w3

w4
w5

w6

z0

2M

LP reformulation for LP-RC
with polyhedral set

Verifying whether is equivalent to
evaluating the optimal value of the following problem

CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS 25

where for each i = 1, ..., s, we have that wi 2 R1⇥m and vi 2 R capture a facet of the
polyhedron through the expression w

T
i z = vi. Moreover, since Z is non-empty, there must

exist a z0 2 Z and since it is bounded there must exist some M > 0 such that Z = Z \ {z 2
Rm | � M  z  M}.

Under assumption 2.2, verifying whether a fixed x satisfies constraint (2.2) is equivalent
to verifying whether the maximum of the optimal value of the following LP is smaller or
equal to b � a

T
x.

maximize
z

x
T
z (2.3a)

subject to Wz  v (2.3b)

where W = [w1 . . . ws]T is the matrix in Rs⇥m which rows are composed of each wi.

Theorem 2.3. :(LP Duality see Chapter 4 of [14]) Under assumption 2.2, the optimal value
of linear program (2.3) is equal to the optimal value of the following dual problem

minimize
�

v
T
� (2.4a)

subject to W
T
� = x (2.4b)

� � 0 (2.4c)

where � 2 Rs.

Proof. Here is how one generally applies duality to replace a maximization problem with
a minimization problem. Let us call the optimal value of problem (2.3). First, we will
demonstrate how to obtain the dual problem which always achieves a larger value than ,
then we will employ Slater’s condition to guarantee that the two values are the same.

Step #1: Obtaining the dual problem Let’s express a relaxed version of problem (2.3),
where we have moved the constraints to the objective function:

⌥(�) := max
z

x
T
z + �

T (v � Wz) .

It is important to realize that as long as � � 0 then ⌥(�) > . This is the case because for
any z that was feasible in problem (2.3) we will have

x
T
z + �

T (v � Wz) � x
T
z ,

since � � 0 and v � Wz � 0 for those z. The problem min��0⌥(�) therefore returns the
lowest upper bound for . Yet, when studying more carefully the expression associated with
⌥(�), we can observe that

⌥(�) =

⇢
�

T
v if x � W

T
� = 0

1 otherwise
.

The problem min��0⌥(�) therefore reduces to problem (2.4).

8z 2 Z, zTx  b� aTx

2.1. POLYHEDRAL UNCERTAINTY 31

2.1 Polyhedral Uncertainty

In this section, we consider that uncertainty about the vector of parameters takes the
form of a polyhedral set defined as follows.

Assumption 2.2. : The uncertainty set Z is a non-empty and bounded polyhedron
that can be defined according to

Z := {z 2 Rm
|w

T
i z  vi , 8 i = 1, ..., s} ,

where for each i = 1, ..., s, we have that wi 2 R1⇥m and vi 2 R capture a facet of the
polyhedron through the expression w

T
i z = vi. Moreover, since Z is non-empty, there

must exist a z0 2 Z and since it is bounded there must exist some M > 0 such that
Z = Z \ {z 2 Rm

| � M  z  M}.

Under assumption 2.2, verifying whether a fixed x satisfies constraint (2.2) is equiv-
alent to verifying whether the maximum of the optimal value of the following LP is
smaller or equal to b � a

T
x.

maximize
z

x
T
z (2.3a)

subject to Wz  v (2.3b)

where W = [w1 . . . ws]T is the matrix in Rs⇥m which rows are composed of each
wi.

Theorem 2.3. :(LP Duality see Chapter 4 of [16]) Under assumption 2.2, the optimal
value of linear program (2.3) is equal to the optimal value of the following dual problem

minimize
�

v
T
� (2.4a)

subject to W
T
� = x (2.4b)

� � 0 (2.4c)

where � 2 Rs. Moreover, problem (2.4) has a feasible solution.

Proof. Here is how one generally applies duality to replace a maximization problem
with a minimization problem. Let us call the optimal value of problem (2.3). First,
we will demonstrate how to obtain the dual problem which always achieves a larger
value than , then we will employ Farkas lemma to guarantee that the two values are
the same, and furthermore that the dual problem is feasibled.

Step #1: Obtaining the dual problem Let’s express a relaxed version of problem
(2.3), where we have moved the constraints to the objective function:

⌥(�) := max
z

x
T
z + �

T (v � Wz) .

(:=)

(⌥⇤ :=)

Weak vs. Strong duality
• Weak duality :

• Proof of weak duality:

• The challenge of Theorem 2.3 is to prove strong duality

• Strong duality does not necessarily apply when objective is non-
linear

<latexit sha1_base64="KelhH1UKnifgVQO3AJWqFBFPb/4=">AAAB/HicbVDLSsNAFJ3UV62vaJduBosgLkoivpZFNy4rmLbQxDKZTtqhk5k4MxFCqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7T5gwqrTjfFulpeWV1bXyemVjc2t7x97daymRSkw8LJiQnRApwignnqaakU4iCYpDRtrh6Hritx+JVFTwO50lJIjRgNOIYqSN1LOrflNRn5EH6HuJokzw++OeXXPqzhRwkbgFqYECzZ795fcFTmPCNWZIqa7rJDrIkdQUMzKu+KkiCcIjNCBdQzmKiQry6fFjeGiUPoyENMU1nKq/J3IUK5XFoemMkR6qeW8i/ud1Ux1dBjnlSaoJx7NFUcqgFnCSBOxTSbBmmSEIS2puhXiIJMLa5FUxIbjzLy+S1kndPa+f3Z7WGldFHGWwDw7AEXDBBWiAG9AEHsAgA8/gFbxZT9aL9W59zFpLVjFTBX9gff4AQIqUhw==</latexit>

  ⌥⇤

<latexit sha1_base64="tayqdHuHh/1JGN6BwR2c4k2Q6zE=">AAADBXichVLLbtNAFB2bVwmvFJbdXBFRlUcjG9GHUkWqYMMySEldKZNY4/EkHXU8dj3jKLHlDRt+pZsuQIgt/8COv2GceFFaHleydHzOPefOXE2QCK604/y07Bs3b92+s3a3ce/+g4ePmuuPj1ScpZQNaCzi9Dggigku2UBzLdhxkjISBYJ5wem7SvdmLFU8ln29SNgoIlPJJ5wSbSh/3drAPcXxWUbCzU4XH+CIzP0i73g5FuwMZiU+gPm4nwPGjU2jQ91QQtXLpV9gYaaFpAM1wFPjcyq9MkIOL2th3N+abXv58yqpCjcNBV7eoAhExsp/xl2a/J9oWJ3y71mvYN71jL0mq+jZuF//QRfwIFFcxHL8wm+2nLazLLgO3Bq0UF09v/kDhzHNIiY1FUSpoeskelSQVHMqWNnAmWIJoadkyoYGShIxNSqWOyjhmWFCmMSp+aSGJXvZUZBIqUUUmM6I6BN1VavIP2nDTE/2RwWXSaaZpKtBk0yAjqF6EhDylFEtFgYQmnJzVqAnJCVUm4fTMEtwr175Ojh63XZ32zsf3rQO39brWEMb6CnaQi7aQ4foPeqhAaLWR+vc+mx9sT/ZF/ZX+9uq1bZqzxP0W9nffwHkje9h</latexit>

 := max
z:Wzv

xT z

= max
z

min
�:��0

xT z + �T (v �Wz)

 min
�:��0

max
z

xT z + �T (v �Wz)

= min
�:��0,x=WT�

vT� = ⌥⇤

Example: box uncertainty

with

•Formulate an equivalent finite dimensional linear program

•Implement this linear program (a.k.a. the reduced form of
the model) using RSOME (incomplete Colab file)

CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS 28

to constitute a “certificate” that x actually satisfies

z
T
x  b � a

T
x , 8 z 2 Z .

This is easily verifiable, since for such a � we have that

z
T
x = z

T
W

T
�  v

T
�  b � a

T
x since Wz  v and � � 0 .

The aspect that is more surprising is that searching through these types of certificates is
su�cient, i.e. if no such � certificate is found than x must be infeasible, in other words “it is
not robust”.

Example 2.5. : Consider the robust optimization problem:

maximize
x

c
T
x

subject to (a + z)T
x  b , 8 z 2 Z ,

where Z follows assumption 2.2. This problem is equivalent to solving

maximize
x,�

c
T
x

subject to a
T
x + v

T
�  b

W
T
� = x

� � 0

In this problem, we are searching for both an x that achieves large objective value, and for
a certificate � that guarantees that x satisfies the robust constraint. Note that this problem
has the same numerical structure as a problem in which we would consider z to be known,
namely a linear program of slightly larger dimension.

In particular, say we are interested in the following “box” uncertainty set:

Z := {z 2 Rn | z̄�  z  z̄
+} ,

then we need to consider that

W =


I

�I

�
, v =


z̄
+

�z̄
�

�
.

Hence, the reformulated problem will look like:

maximize
x,�+,��

c
T
x

subject to a
T
x + z̄

+T
�

+ � z̄
�T

�
�  b

�
+ � �

� = x

�
+ � 0 �

� � 0

This reformulation is implemented using ROME in the Matlab file “SimpleExample.m”.

<latexit sha1_base64="2IhlL/JXfJyxdsnjqL3a45fcYGY=">AAACJnicbVBLSwMxGMz6rPVV9eglWAQvll3xhVAoevFYxT6wu5Zsmm1Ds9k1yQrtur/Gi3/Fi4eKiDd/ium2grYOhAwz30cy44aMSmWan8bM7Nz8wmJmKbu8srq2ntvYrMogEphUcMACUXeRJIxyUlFUMVIPBUG+y0jN7V4M/doDEZIG/Eb1QuL4qM2pRzFSWmrmiraPVAcjFt8mZ0U77tuUp5LrxtfJHX/ctztIxf3EZuQe9mF6/UhJM5c3C2YKOE2sMcmDMcrN3MBuBTjyCVeYISkblhkqJ0ZCUcxIkrUjSUKEu6hNGppy5BPpxGnMBO5qpQW9QOjDFUzV3xsx8qXs+a6eHCaQk95Q/M9rRMo7dWLKw0gRjkcPeRGDKoDDzmCLCoIV62mCsKD6rxB3kEBY6WazugRrMvI0qR4UrOPC0dVhvnQ+riMDtsEO2AMWOAElcAnKoAIweAIvYADejGfj1Xg3PkajM8Z4Zwv8gfH1DbNDpyg=</latexit>

Z := {z 2 Rn|� ẑ  z  ẑ}

https://colab.research.google.com/drive/1Q0v0-kZn2GrIf0OFfLdDykEL2RlIluhl?usp=sharing

Implementation in RSOME

(see complete Colab file)

• Robust counterpart: • Reduced form: 

https://colab.research.google.com/drive/1hcv0wBjFBtFgwYE9TjfpVaKhHwLQyWZv?usp=sharing

Example: box uncertainty
(reformulation #2)

with
•Formulate an equivalent finite dimensional linear program

using the equivalent uncertainty set definition:

CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS 28

to constitute a “certificate” that x actually satisfies

z
T
x  b � a

T
x , 8 z 2 Z .

This is easily verifiable, since for such a � we have that

z
T
x = z

T
W

T
�  v

T
�  b � a

T
x since Wz  v and � � 0 .

The aspect that is more surprising is that searching through these types of certificates is
su�cient, i.e. if no such � certificate is found than x must be infeasible, in other words “it is
not robust”.

Example 2.5. : Consider the robust optimization problem:

maximize
x

c
T
x

subject to (a + z)T
x  b , 8 z 2 Z ,

where Z follows assumption 2.2. This problem is equivalent to solving

maximize
x,�

c
T
x

subject to a
T
x + v

T
�  b

W
T
� = x

� � 0

In this problem, we are searching for both an x that achieves large objective value, and for
a certificate � that guarantees that x satisfies the robust constraint. Note that this problem
has the same numerical structure as a problem in which we would consider z to be known,
namely a linear program of slightly larger dimension.

In particular, say we are interested in the following “box” uncertainty set:

Z := {z 2 Rn | z̄�  z  z̄
+} ,

then we need to consider that

W =


I

�I

�
, v =


z̄
+

�z̄
�

�
.

Hence, the reformulated problem will look like:

maximize
x,�+,��

c
T
x

subject to a
T
x + z̄

+T
�

+ � z̄
�T

�
�  b

�
+ � �

� = x

�
+ � 0 �

� � 0

This reformulation is implemented using ROME in the Matlab file “SimpleExample.m”.

<latexit sha1_base64="MZTfR4ZmFSwF6nwz814g99efuq8=">AAACx3icbZFNb9QwEIad8FWWr4UeuViskJBKV0nFRy+VqtID3Api24r1duU4k6yp46T2pOpuyIG/yI0LvwVnG0LZMpKlV8/M67FnokJJi0Hw0/Nv3Lx1+87a3d69+w8ePuo/fnJo89IIGIlc5eY44haU1DBCiQqOCwM8ixQcRafvmvzRORgrc/0Z5wVMMp5qmUjB0aFp/xfLOM4EV9WXeocpSJBVCyb1EkdR9ak+cVrGsYJvDC7cgyxl+6CQn2xcrXn5h26u0AhSqStuDJ/Xlag7bwpnNPjroi1gjC52ug50sytoMh3e6Jop52IzjtWipgx03HZiRqYzZPW0PwiGwTLodRG2YkDaOJj2f7A4F2UGGoXi1o7DoMCJuxWlUFD3WGmh4OKUpzB2UvMM7KRa7qGmzx2JaZIbdzTSJb3qqHhm7TyLXGUzJLuaa+D/cuMSk+1JJXVRImhx2SgpFcWcNkulsTQgUM2d4MJI91YqZtxwgW71PTeEcPXL18Xh1jB8M3z98dVgd68dxxp5Sp6RFyQkb8kueU8OyIgIb9/76lkP/Q9+7p/7F5elvtd61sk/4X//DbFQ3WM=</latexit>

Z =

8
<

:z 2 Rn

������
9�+Rn,��Rn,

�+ � 0,�� � 0,
z = �+ ���,
�+ +��  ẑ

9
=

;

<latexit sha1_base64="2IhlL/JXfJyxdsnjqL3a45fcYGY=">AAACJnicbVBLSwMxGMz6rPVV9eglWAQvll3xhVAoevFYxT6wu5Zsmm1Ds9k1yQrtur/Gi3/Fi4eKiDd/ium2grYOhAwz30cy44aMSmWan8bM7Nz8wmJmKbu8srq2ntvYrMogEphUcMACUXeRJIxyUlFUMVIPBUG+y0jN7V4M/doDEZIG/Eb1QuL4qM2pRzFSWmrmiraPVAcjFt8mZ0U77tuUp5LrxtfJHX/ctztIxf3EZuQe9mF6/UhJM5c3C2YKOE2sMcmDMcrN3MBuBTjyCVeYISkblhkqJ0ZCUcxIkrUjSUKEu6hNGppy5BPpxGnMBO5qpQW9QOjDFUzV3xsx8qXs+a6eHCaQk95Q/M9rRMo7dWLKw0gRjkcPeRGDKoDDzmCLCoIV62mCsKD6rxB3kEBY6WazugRrMvI0qR4UrOPC0dVhvnQ+riMDtsEO2AMWOAElcAnKoAIweAIvYADejGfj1Xg3PkajM8Z4Zwv8gfH1DbNDpyg=</latexit>

Z := {z 2 Rn|� ẑ  z  ẑ}

Equivalent LP reformulation
for LP-RC

CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS 30

Theorem 2.7. : The LP-RC problem, with a polyhedral Z described through Wz  v (as in
assumption 2.2), is equivalent to the following linear program

maximize
x,{�(j)}Jj=0

p
T
0 x + r0 � v

T
�

(0)

subject to W
T
�

(0) = �P
T
0 x � q0

p
T
j x + v

T
�

(j)  rj , 8 j = 1, . . . , J

W
T
�

(j) = P
T
j x � qj , 8 j = 1, . . . , J

�
(j) � 0 , 8 j = 0, . . . , J

where �
(j) 2 Rs are additional certificates that need to be optimized jointly with x.

2.2 General Uncertainty Sets

We now extend our discussion to the question of identifying tractable reformulation to prob-
lems that involve general convex uncertainty sets. To do so, for simplicity we look again at
the special case of example 2.5 with an uncertainty set now defined as follows.

Assumption 2.8. : The uncertainty set Z is a bounded convex set defined by

Z := {z 2 Rm | f(z)  0 , Wz  v} ,

for some convex function f(z). Moreover, there exists a realization z0 2 Z that satisfies the
nonlinear constraint strictly, namely f(z0) < 0.

When we focus on the robust constraint we seek a way of validating for a fixed x the fact
that the optimal value of the following optimization problem is smaller or equal to b�a

T
x:

 := max
z

x
T
z (2.6a)

subject to f(z)  0 (2.6b)

Wz  v . (2.6c)

Traditionally, in this case the dual problem is assembled based on Lagrangian duality (see
Chapter 5 of [15]), which states that the optimal value of the problem above is equal to

 = max
z

min
��0,��0

L(z, �, �) := x
T
z � �f(z) + �

T (v � Wz) .

The intuition behind this “constraint-free” reformulation is that for any fixed z, if z does not
satisfy a constraint then the internal minimization problem can simply apply an arbitrarily
large penalty through � or � so that L(z, �, �) reaches �1, which is considered equivalent
to being infeasible.

As was the case for linear program, the optimal value of problem (2.6) or equivalently of
the max min L(z, �, �) is bounded above by

⌥⇤ := min
��0,��0

max
z

x
T
z � �f(z) + �

T (v � Wz) � .

SOCP reformulation for LP-RC
with ellipsoidal uncertainty

Verifying whether with 
 
  
 
and is equivalent to evaluating the optimal value of the
following problem

One can demonstrate using Cauchy-Schwartz inequality  
 
 
that this is equivalent to

8z 2 Z, zTx  b� aTx

CHAPTER 2. ROBUST COUNTERPART OF LINEAR PROGRAMS 32

To complete the tractable reformulation of the robust counterpart problem presented in
example 2.5

maximize
x,�,�

c
T
x (2.8a)

subject to v
T
� + f

⇤
p (x � W

T
�, �)  b � a

T
x (2.8b)

� � 0, � � 0 (2.8c)

Note that to consider the optimization model above tractable, one needs to have an analytical
expression that evaluates f

⇤
p (y, �).

We generalize this “tractable” reformulation to the the general LP-RC model in the
following theorem.

Theorem 2.10. : The LP-RC problem with an uncertainty set Z that satisfies assumption
2.8 is equivalent to the following linear program

maximize
x,{�(j)}Jj=0,{�(j)}Jj=0

p
T
0 x + r0 � v

T
�

(0) � f
⇤
p (�P

T
0 x � q0 � W

T
�

(0)
, �

(0)) (2.9a)

subject to v
T
�

(j) + f
⇤
p (P T

j x + qj � W
T
�

(j)
, �

(j)) + p
T
j x + rj  0 , 8 j = 1, . . . , J(2.9b)

�
(j) � 0 , 8 j = 0, . . . , J (2.9c)

�
(j) � 0 , 8 j = 0, . . . , J (2.9d)

(2.9e)

where �
(j) 2 R and �

(j) 2 Rs are additional certificates that need to be optimized jointly with
x.

2.2.1 Example: Ellipsoidal Uncertainty

Let us assume that one is interested in the robust counterpart of example 2.5 with Z taking
the following shape:

Z := {z 2 Rm | zT ⌃�1
z  1}

with ⌃ 2 Rm⇥m such that ⌃ � 0, meaning that it is a positive definite matrix.
We are interested in identifying a tractable form for the reformulation presented in equa-

tion (2.8) in the specific context where f(z) := z
T ⌃�1

z � 1, W = 0, and v = 0. Namely, we
need to simplify the problem:

maximize
x,�

c
T
x

subject to f
⇤
p (x, �)  b � a

T
x

� � 0

To do so, one needs to identify an analytical expression that evaluates f
⇤
p (y, �). this can

be done by identifying a closed form solution of the problem

f
⇤
p (y, �) := max

z
y

T
z � �(zT ⌃�1

z � 1) .

aT b  kak2kbk2

 = �
p
xT⌃x = �k⌃1/2xk2

<latexit sha1_base64="XCyL2Nm7O3ckZVUriZP8HRDOOL8=">AAAISXicjVXLbtNQEJ1SIKW8WliysYgQCFUhDkggoUoVFAS7AH1EatJiO04wtWPXdiDF9cfwNSzYwJI/gCU7xIoz45vUaZoYW8mde+6ZMzP3ZTNwnSiuVn/MnZk/e+58aeHC4sVLl69cXVq+thX5/dCyNy3f9cOGaUS26/TszdiJXbsRhLbhma69be4/5fHtD3YYOX5vIz4M7JZndHtOx7GMGNDe0uNmPXK0Va3ZNTzPaEYHYZxog90NrfnG6XqGNkhX1dBRhuwm+r1aOmge7dX2lsrVSlUebdLQlVEm9dT95fmEmtQmnyzqk0c29SiG7ZJBEd4d0qlKAbAWJcBCWI6M25TSInz7YNlgGED38d9Fb0ehPfRZMxJvC1Fc/EJ4anQLPj54IWyOpsl4X5QZnaadiCbndojWpBXV99DG9G7U70CNa4lGCI96Ent61jH8Hkm2DrwDQbgOS+Xcl/o5Ry2XfwyFABjbbYyHsC3xHM6oJj6RVMmzaMj4T2Eyyn1Lcfv0C9j0uWWlWNRDGcsir6iMeIVY30HLmCfxulLPKtWogh/bXCPr+ZIj+xzKinLcHpCPMl+2KHIdd8EfR1IgGyeQWd4BbF9yjCQ7R1aIVepTRrJs2lDooH1GA6mVZy4h3rfDNTfxahhPVQZDj0zXPJVdn2B7Mi+OtJ9kpx37cHbcD4FoE8xJJQO5/p/SOPOkUoQ9YMLPVzVkXhn6Xs2FJuomOANwNHnTEZd907GVsWTNOXIPcVjVkciJslnRwT6x8VsRrdneWxjne6IlCoyYctLbozPKPY3K4KSFagPJhFUTsWezG4o9nF0+XS6QRqGnnYtjF7KrOXa1kK3n2Hohu6Pm/nkhcx3rwvfY6TWvF/p7o/UY5NYsv3t4x1nYOY7c+ZHalcdrtyj7yp4a4fVoXvOnLQFelNsB9rQvt9pLqXCY3Vu8HP023tkKfCqC0R2Yr0+nPbQ7otPKMsGXUj/5XZw0tmoV/X6l9upBee2J+mYu0A26SXeg9JDW6AXukU3k8pm+0Df6Xvpa+l36U/qbUc/MKZ/rNPYszP8D+tSvzA==</latexit>

 := max
z:zT⌃�1z�2

xT z
<latexit sha1_base64="JOnFjNVxK30DR+UCf/96bTkjet4=">AAAIQ3icjVXNbtNAEJ5SIKX8tXDksiJCIFQiO4BAlSpVUBDcAqRtpCYNtrMJS+3YtR1IY/lJeBoOXOAJeAMQN8QViZnJJnWaJsZWsrPffvPNzP7ZDlwVxYbxfeHM4tlz5wtLF5YvXrp85erK6rWdyO+Fjtx2fNcPa7YVSVd15XasYlfWglBanu3KXfvgKY3vfpBhpPxuNT4KZMOzOl3VVo4VI9RceVivREqsb4i6Z/WbyWB9sF8V9Teq41n7yT0zFQNRd+WhqHcsD6FyKvr71UFzpWiUDH7EtGFqowj6qfiriwnUoQU+ONADDyR0IUbbBQsifPfABAMCxBqQIBaipXhcQgrL6NtDlkSGhegB/newt6fRLvZJM2JvB6O4+AvRU8At9PGRF6JN0QSP91iZ0FnaCWtSbkfY2rCm+x62Mbwb99uoRrVEY4RGPY49O+sY/R5ztgq9A0aoDkfn3OP6KUeRyT9GhQAxsls4HqLtsOdoRgX7RFwlzaLF4z+YSSj1Hc3twU/EZs8tKcWsHvLYMPKazohWiPQVtoR5HK/D9WxAGUr4I5tqJD2fcySfI15RittF5CPPl2RFquMu8ieRFJHqCWSed4C2zzlGnJ3iFSKVyoyRYTYtVGhj+wz6XCvNXAK0b0drbuMrcDzVGYw8hrr2qezKFNvjeVHcDninHftQdtQPERFTzGklC3P9P6VJ5kmlCPeAjX6+rmHoNUTf67kQrG4jp48cwW865pJvOrEyDq85Re5iHFJVHDnRNikq3CcSf2usNd97B8fpnmiwAiE2n/TW+IxST0AROWmuWp8zIdWE7fnsmmaPZpdOl4tILddTZuLIXLaRYRu5bDPDNnPZbT33z3OZW7gudI+dXvNWrr83Xo9+Zs2yu4d2nIM7R/GdH+ldebx2y7yv5MwIr8fzmj1tCeJ5uR3invb5VnvJFY6ye4svRb+N73wFOhXB+A7M1mdCE9s91mkMM8EvpXnyuzht7JRL5v1S+dWD4uYT/c1cghtwE+6g0iPYhBd4j2xjLp/gM3yFb4UvhV+F34U/Q+qZBe1zHSaewt9/sAitmA==</latexit>

Z := {z 2 Rm|zT⌃�1z  �2}
<latexit sha1_base64="qNeHgIsMOE2yBp/i2a81FjUh4ZY=">AAAIRXicjVXLbtNQEJ22QEp5tbBkYxEhECpVEpCKkCpVUBDsSukjok6L7dykpnbs2g6kMf4UvoYFG/gA/gAW7BBbODNxUqdpYmwld+65Z87M3JdN37HDqFT6PjU9c+78hcLsxblLl69cvTa/cH079NqBpbYsz/GCqmmEyrFbaiuyI0dV/UAZrumoHfPwKY/vvFdBaHutzejYVzXXaLbshm0ZEaD9+WXdNaIDy3DiN8njFT3u6nZL31B77sfu3qb+2m66xl58v5x0dUcdaXrTcAFU9GR/vlhaKsmjjRrl1ChS+qx7CzMx6VQnjyxqk0uKWhTBdsigEO8ulalEPrAaxcACWLaMK0poDr5tsBQYBtBD/DfR203RFvqsGYq3hSgOfgE8NboNHw+8ADZH02S8LcqMjtOORZNzO0Zr0mLad9FGdDDoN6DGtYQDhEddiT0+6wh+jyRbG96+IFyHlebclvo5Ry2TfwQFHxjbdYwHsC3x7M+oJj6hVMmzaMj4D2Eyyn0r5bbpJ7Dxc8tKkagHMtaLvJhmxCvE+jZaxlyJ15R6VqhCS/ixzTWynic5ss+xrCjHbQH5IPOlRJHruAf+MJIA2TyFTPL2YXuSYyjZ2bJCrLI+ZqSXTR0KDbTPqCO18szFxPu2v+YmXg3jSZpB36Ona57JXh9huzIvtrRd2WknPpwd9wMg2ghzVMlArv+nNMw8rRRiD5jw89Iael499F06F5qom+B0wNHkTQZc9k2GVsaSNefILcRhVVsix6nNijb2icJvUbQme29jnO+JmigwYspJrw/OKPc0KoKT5Kp1JBNWjcWezK6m7P7s8ulygFRzPVUmjspllzLsUi67nGGXc9mNdO6f5zLXsC58j51d81quvztYj05mzbK7h3echZ1jy50fprvyZO3mZF+psRE2BvOaPW0x8LzcjrCnPbnVXkqF/eze4uXod/BOVuBT4Q/uwGx9ZdpHuys6tV4m+FKWT38XR43tylL5wVLl1cPi6pP0mzlLN+kW3YXSMq3SC9wjW8jlE32mr/St8KXwq/C78KdHnZ5KfW7Q0FP4+w+8xrBS</latexit>

SOCP reformulation for LP-RC with
polyhedral set ellipsoidal uncertainty

Theorem. The LP-RC problem, with ellipsoidal set Z described is
equivalent to the following second order cone program

maximize
x

pT0 x+ r0 � �k⌃1/2(PT
0 x+ q0)k2

subject to pTj x+ �k⌃1/2(PT
j x� qj)k2  rj , 8 j = 1, . . . , J .

<latexit sha1_base64="aen9lw3IvnzH/Z6FbgrmN0mAxo0=">AAAKFHicjVXdcttEFN66FGrz18AlNzukKUlRjWwuYDqTmQ4pDDC5MMFJM0SJWUlre92VVl7JjVNVL8EFN/Ao3DHccs8bwFtwzrHs2HEcVxp7z377ne/87EryE63SzHX/uVW5/cadN9+6W629/c67771/b+ODo9SMbCAPA6ONPfZFKrWK5WGmMi2PEytF5Gv5zH++h+vPXkibKhO3s4tEnkaiF6uuCkQGUGejcsfzZU/FedaXxsqo8LTwpYZp9Phgv/V4v3WwZ2XX2KiotfuS77ceHezxxBoIEDn8XGV9LrVWSWpUKDRPZcbve5HI+oHQ+U/FfR7KNLDKlyFXKZfDkXohtIwznhkOMXnXaG3OVdwD18DEITc2lJaDKTFMz4qoVqYoh7GwVlw8LGoQYawi9VJ28nHBHzzgScc9a/Mx/5Tbjssfca8nokh4r7wfVS8SZ3njs2bBt1sz1rDj7nivOk3Pq3npyIdktkAFio/8EOjb7k7Bd/kCH6hbFGlQYl46tFmeXzoNdorirD0JuYiCshxCagPuOY7neNBQobXnDHYbjheaLHW+B/lF9WsqgAImy1DhsDOgCl5H2qnXPBmHCx3E+XTTa517m27dpYsvG43S2GTl1TIbt3PmsZAZFrARi5hkMcvA1kywFO4T1mAuSwA7ZTlgFixF65IVrAa+I2BJYAhAn8N/D2YnJRrDHDVT8g4gioafBU/OtsDHAM+CjdE4rY9IGdFV2jlpYm4XMPrMKecRjBnrz+ZdUMNa0hmCqxHFXp11Bn5fUrYKvBNCsI6gzHlE9WOOfC7/DBQSwNAOYd2CHZDntKOcfFKqErsoaP1fYiKK86Dkjth/gK3uLSplpG5pbRLZKTPCHUJ9BSNiEcXrUT27rMnq8EMba0Q9QzmizwXtKMaNATmnfklSxDoeAn8RKQBpX0Fu8k7ANpRjStkp2iFUaa1YmWQTgkIXxq/ZmGrFzuUMz+10z324OawXZQZTj4mufy27tcSOqC+Kxpd00i59MDucW0D4EnNZSUCur6e0yLyqlMIZ8MHPlDVMvCbooOwFJ3UfOGPgcLqLGRd9i4WdCWjPMXIMcVBVUeS8tFFRwTmR8HNI62bvI1jH98QpKSDi05Mezp5RnHG2CZxirdqYMkHVnOyb2ccle9pdfLo0IMdrPeVcHLmW7c6x3bXsxhy7sZbdLXv/zVrmU9gXfI9dX/PTtf7RbD/Gc3s2f3rwxAVwchS989PyVF7uXY3OlVwZ4WDW1/mnLQd8XW5DONOG3mrfUYXT7H6GG6N/AvfNCvhUJLN34Hx9DdaB8YR0TieZwJeycfW7uGwcNeuNz+vNH5qbT74qv5l32UfsY7YNSl+wJ+xbeI8csqCiK79Ufqv8Xv21+kf1z+pfE2rlVunzIVu4qn//DzDmSc0=</latexit>

