Chapter 2:

Robust Counterpart of Linear Programs

General robust LP

(Robust counterpart) $\begin{aligned} & \text { maximize } \\ & \text { subject to }\end{aligned} \min _{z \in \mathcal{Z}} h(x, z)$
$g_{j}(x, z) \leq 0, \forall z \in \mathcal{Z},, \forall j$
We assume that the nominal problem is an LP

$$
\begin{aligned}
h(x, z) & :=c(z)^{T} x+d(z) \\
g_{j}(x, z) & :=a_{j}(z)^{T} x-b_{j}(z),
\end{aligned}
$$

And that all functions are affine in $<z$ »

$$
\begin{aligned}
& c(z):=\left(P_{0} z+p_{0}\right) \\
& \text { \& } \\
& d(z)=q_{0}^{T} z+r_{0}, \\
& a_{j}(z):=\left(P_{j} z+p_{j}\right) \\
& \text { \& } \\
& b_{j}(z)=q_{j}^{T} z+r_{j},
\end{aligned}
$$

In other words, we are left with the following LP-RC
(LP-RC) $\underset{x}{\operatorname{maximize}} \min _{z \in \mathcal{Z}} z^{T} P_{0}^{T} x+q_{0}^{T} z+p_{0}^{T} x+r_{0}$

$$
\begin{equation*}
\text { subject to } \quad z^{T} P_{j}^{T} x+p_{j}^{T} x \leq q_{j}^{T} z+r_{j}, \forall z \in \mathcal{Z},, \forall j=1, \ldots, J . \tag{2.1a}
\end{equation*}
$$

NP-hardness for general uncertainty sets

- Take the robust counterpart optimization problem

$$
\begin{array}{cl}
\underset{x}{\operatorname{maximize}} & c^{T} x \\
\text { subject to } & (a+z)^{T} x \leq b, \forall z \in \mathcal{Z},
\end{array}
$$

- Verifying for a fixed «x» whether the following claim is true is NP-hard in general, and in particular when the uncertain vector contains integer variables

$$
z^{T} x \leq b-a^{T} x, \forall z \in \mathcal{Z} \Leftrightarrow \max _{z \in \mathcal{Z}} z^{T} x \leq b-a^{T} x
$$

- Consider the following robust counterpart

$$
\begin{aligned}
\underset{x}{\operatorname{maximize}} & c^{T} x \\
\text { subject to } & (a+z)^{T} x \leq b, \forall z \in \mathcal{Z},
\end{aligned}
$$

with scenario based uncertainty

$$
\mathcal{Z}:=\left\{\bar{z}_{1}, \bar{z}_{2}, \ldots, \bar{z}_{K}\right\}
$$

- Then, one can reduce the problem to

$$
\begin{aligned}
\underset{x}{\operatorname{maximize}} & c^{T} x \\
\text { subject to } & \left(a+\bar{z}_{i}\right)^{T} x \leq b, \forall i=1, \ldots, K
\end{aligned}
$$

Polyhedral uncertainty

Assumption 2.2.: The uncertainty set \mathcal{Z} is a non-empty and bounded polyhedron that can be defined according to

$$
\mathcal{Z}:=\left\{z \in \mathbb{R}^{m} \mid w_{i}^{T} z \leq v_{i}, \forall i=1, \ldots, s\right\},
$$

where for each $i=1, \ldots, s$, we have that $w_{i} \in \mathbb{R}^{1 \times m}$ and $v_{i} \in \mathbb{R}$ capture a facet of the polyhedron through the expression $w_{i}^{T} z=v_{i}$. Moreover, since \mathcal{Z} is non-empty, there must exist a $z_{0} \in \mathcal{Z}$ and since it is bounded there must exist some $M>0$ such that $\mathcal{Z}=\mathcal{Z} \cap\left\{z \in \mathbb{R}^{m} \mid-M \leq z \leq M\right\}$.

LP reformulation for LP-RC with polyhedral set

Verifying whether $\forall z \in \mathcal{Z}, z^{T} x \leq b-a^{T} x$ is equivalent to evaluating the optimal value of the following problem

$$
\begin{array}{lll}
(\Psi:=) & \underset{z}{\operatorname{maximize}} & x^{T} z \\
\text { subject to } & W z \leq v \tag{2.3b}
\end{array}
$$

Theorem 2.3.:(LP Duality see Chapter 4 of [16]) Under assumption 2.2, the optimal value of linear program (2.3) is equal to the optimal value of the following dual problem

$$
\begin{align*}
& \left(\Upsilon^{*}:=\right) \quad \underset{\lambda}{\operatorname{minimize}} \quad v^{T} \lambda \tag{2.4a}\\
& \text { subject to } \quad W^{T} \lambda=x \tag{2.4b}\\
& \lambda \geq 0 \tag{2.4c}
\end{align*}
$$

where $\lambda \in \mathbb{R}^{s}$. Moreover, problem (2.4) has a feasible solution.

Weak vs. Strong duality

- Weak duality: $\Psi \leq \Upsilon^{*}$
- Proof of weak duality:

$$
\begin{aligned}
\Psi & :=\max _{z: W z \leq v} x^{T} z \\
& =\max _{z} \min _{\lambda: \lambda \geq 0} x^{T} z+\lambda^{T}(v-W z) \\
& \leq \min _{\lambda: \lambda \geq 0} \max _{z} x^{T} z+\lambda^{T}(v-W z) \\
& =\min _{\lambda: \lambda \geq 0, x=W^{T} \lambda} v^{T} \lambda=\Upsilon^{*}
\end{aligned}
$$

- The challenge of Theorem 2.3 is to prove strong duality
- Strong duality does not necessarily apply when objective is nonlinear

Example: box uncertainty

Consider the robust optimization problem:

$$
\begin{aligned}
\underset{x}{\operatorname{maximize}} & c^{T} x \\
\text { subject to } & (a+z)^{T} x \leq b, \forall z \in \mathcal{Z} \\
& 0 \leq x \leq 1
\end{aligned}
$$

with $\quad \mathcal{Z}:=\left\{z \in \mathbb{R}^{n} \mid-\hat{z} \leq z \leq \hat{z}\right\}$

- Formulate an equivalent finite dimensional linear program
- Implement this linear program (a.k.a. the reduced form of the model) using RSOME (incomplete Colab file)

Implementation in RSOME (see complete Colab file)

- Robust counterpart:
- \#Create model
model $=$ ro.Model('simpleExample_rawrobust') $\mathrm{x}=$ model. $\operatorname{dvar}(\mathrm{n})$
\#Create uncertain vector
$z=$ model. $\operatorname{rvar}(\mathrm{n})$
\#Create uncertainty set
boxSet= (z>=zBarMinus, z <= zBarPlus)
model.max(c@x)
\#Robustify the constraint
model.st(($(a+z) @ x<=b)$.forall (boxSet))
model.st($x>=0$)
model.st $(\mathrm{x}<=1)$
model.solve(my_solver)
- Reduced form:
- \#Create model
model = ro.Model('simpleExample_redrobust')
$\mathrm{x}=$ model.dvar(n)
\#Create auxiliary variables
lambdaPlus=model.dvar(n)
lambdaMinus=model.dvar(n)
model.max(c@x)
\#Modify the deterministic constraint
model.st(a@x + zBarPlus@lambdaPlus -zBarMinus@lambdaMinus <=b)
\#Add constraints from dual representation of worst-case optimization
model.st(lambdaPlus-lambdaMinus $==x$)
model.st(lambdaPlus>=0)
model.st(lambdaMinus>=0)
model.st($x>=0)$
model.st($x<=1$)
model.solve(my_solver)

Example: box uncertainty (reformulation \#2)

Consider the robust optimization problem:

$$
\begin{aligned}
\underset{x}{\operatorname{maximize}} & c^{T} x \\
\text { subject to } & (a+z)^{T} x \leq b, \forall z \in \mathcal{Z} \\
& 0 \leq x \leq 1
\end{aligned}
$$

with $\quad \mathcal{Z}:=\left\{z \in \mathbb{R}^{n} \mid-\hat{z} \leq z \leq \hat{z}\right\}$

- Formulate an equivalent finite dimensional linear program using the equivalent uncertainty set definition:

$$
\mathcal{Z}=\left\{z \in \mathbb{R}^{n} \mid \exists \Delta^{+} \mathbb{R}^{n}, \Delta^{-} \mathbb{R}^{n}, \quad \begin{array}{c}
\Delta^{+} \geq 0, \Delta^{-} \geq 0 \\
z=\Delta^{+}-\Delta^{-} \\
\Delta^{+}+\Delta^{-} \leq \hat{z}
\end{array}\right\}
$$

Equivalent LP reformulation for LP-RC

Theorem 2.7. : The $L P-R C$ problem, with a polyhedral \mathcal{Z} described through $W z \leq v$ (as in assumption 2.2), is equivalent to the following linear program

$$
\begin{array}{cl}
\underset{x,\left\{\lambda^{(j)}\right\}_{j=0}^{J}}{\operatorname{maximize}} & p_{0}^{T} x+r_{0}-v^{T} \lambda^{(0)} \\
\text { subject to } & W^{T} \lambda^{(0)}=-P_{0}^{T} x-q_{0} \\
& p_{j}^{T} x+v^{T} \lambda^{(j)} \leq r_{j}, \forall j=1, \ldots, J \\
& W^{T} \lambda^{(j)}=P_{j}^{T} x-q_{j}, \forall j=1, \ldots, J \\
& \lambda^{(j)} \geq 0, \forall j=0, \ldots, J
\end{array}
$$

where $\lambda^{(j)} \in \mathbb{R}^{s}$ are additional certificates that need to be optimized jointly with x.

SOCP reformulation for LP-RC with ellipsoidal uncertainty

Verifying whether $\forall z \in \mathcal{Z}, z^{T} x \leq b-a^{T} x$ with

$$
\mathcal{Z}:=\left\{z \in \mathbb{R}^{m} \mid z^{T} \Sigma^{-1} z \leq \gamma^{2}\right\}
$$

and $\Sigma \succ 0$ is equivalent to evaluating the optimal value of the following problem

$$
\Psi:=\max _{z: z^{T} \Sigma^{-1} z \leq \gamma^{2}} x^{T} z
$$

One can demonstrate using Cauchy-Schwartz inequality

$$
a^{T} b \leq\|a\|_{2}\|b\|_{2}
$$

that this is equivalent to

$$
\Psi=\gamma \sqrt{x^{T} \Sigma x}=\gamma\left\|\Sigma^{1 / 2} x\right\|_{2}
$$

SOCP reformulation for LP-RC with polyhedral set ellipsoidal uncertainty

Theorem. The LP-RC problem, with ellipsoidal set \mathcal{Z} described is equivalent to the following second order cone program

$$
\begin{array}{cl}
\underset{x}{\operatorname{maximize}} & p_{0}^{T} x+r_{0}-\gamma\left\|\Sigma^{1 / 2}\left(P_{0}^{T} x+q_{0}\right)\right\|_{2} \\
\text { subject to } & p_{j}^{T} x+\gamma\left\|\Sigma^{1 / 2}\left(P_{j}^{T} x-q_{j}\right)\right\|_{2} \leq r_{j}, \forall j=1, \ldots, J
\end{array}
$$

