Chapter 2:

Robust Counterpart of Linear Programs



General robust LP

(Robust counterpart) maximize  min h(x, 2)
T €2

subject to  gj(x,2) <0,Vze Z,,Vj=1,...,J.

We assume that the nominal problem is an LP
hiz,z) =c(2)lz+d(2)
gi(x,z) :=a; (Z)T:E —bi(2) ,
And that all functions are affine in « z »
c(z) = (Poz + po) & d(z) =q4 2+ 1o,
a;(z) := (Pjz + pj) & bi(z) = qu + 7,

In other words, we are left with the following LP-RC

(LP-RC) maxzivmize Erélg AP e+l 2+l 4o

subject to zTPij +p?x < q;-rz +r;,Vze Z, ,Vy=1,...,J.

(2.1a)

(2.1Db)



NP-hardness for general
uncertainty sets

e Jake the robust counterpart optimization problem

maximize cLr

T

subject to (a+2)x<b,VzeZ,

e Verifying for a fixed « x » whether the following
claim is true is NP-hard in general, and in particular
when the uncertain vector contains integer
variables

szSb—aTx, VzeZ & maxzlaz<b—alx

zEZX



Scenario based uncertainty

* Consider the following robust counterpart

maximize Ly

X

subject to (a+2)'x<b,VzeZ,

with scenario based uncertainty

Z:=1{z,%,...., 2K }

* Then, one can reduce the problem to

maximize cLr

T

subject to (@ + Z) e <b,Vi=1,. K



Polyhedral uncertainty

Assumption 2.2. : The uncertainty set Z is a non-empty and bounded polyhedron
that can be defined according to

Z={zeR"|w/z<v,Vi=1,..,5},

where for each ¢ = 1, ..., s, we have that w; € R and v; € R capture a facet of the
polyhedron through the expression w! z = v;. Moreover, since Z is non-empty, there

must exist a zg € £ and since it 1S bounded there must exist some M > 0 such that
Z=ZN{zeR™"| - M < z< M}

2M




| P reformulation tfor LP-RC
with polyhedral set

Verifying whether Vz € Z, 212z <b—a’z is equivalent to
evaluating the optimal value of the following problem

(\If ::) maximize 2!z (2.3a)

z

subject to Wz <w (2.3b)

Theorem 2.3. :(LP Duality see Chapter 4 of [16]) Under assumption 2.2, the optimal
value of linear program (2.3) is equal to the optimal value of the following dual problem

(T* ;:) mini/\mize v\ (2.4a)
subject to Wil =1z (2.4b)
A>0 (2.4¢)

where A € R®. Moreover, problem (2.4) has a feasible solution.



Weak vs. Strong duality

+ Weak duality : Iy < Y

* Proof of weak duality:

U = max z'z

z: W z<v

= max min z'z+ X (v —W2)

z A:A>0
: T T

< min maxz z4+ X" (v— Wz)
AA>0 =z

— min oI =T*

AA>0,2=WT\
* The challenge of Theorem 2.3 is to prove strong duality

o Strong duality does not necessarily apply when objective is non-
linear



Example: box uncertainty

Consider the robust optimization problem:

maximize '

xZr

subject to  (a+2)'z<b,Vze Z
0<zx<1,

with Z:={zeR"|-2<2< 2}
e -ormulate an equivalent finite dimensional linear program

e |mplement this linear program (a.k.a. the reduced form of
the model) using RSOME (incomplete Colab file)



https://colab.research.google.com/drive/1Q0v0-kZn2GrIf0OFfLdDykEL2RlIluhl?usp=sharing

Implementation in RSO

see complete Colab file

* Robust counterpart:  Reduced torm:

° #Create model O #create model
model = ro.Model('simpleExample rawrobust') model = ro.Model('simpleExample_redrobust’)
x=model.dvar(n) x=model.dvar(n)

#Create auxiliary variables
lambdaPlus=model.dvar(n)
lambdaMinus=model.dvar(n)

#Create uncertain vector
z= model.rvar(n)

#Create uncertainty set
model.max(c@x)

#Modify the deterministic constraint
model.st(a@x + zBarPlus@lambdaPlus -zBarMinus@lambdaMinus <=b)
#Add constraints from dual representation of worst-case optimization

boxSet= (z>=zBarMinus, z <= zBarPlus)

model .max (c@x)

#Robustify the constraint model.st(lambdaPlus-lambdaMinus == x)
model.st(((a+z)@x<=b).forall(boxSet)) model.st (lambdaPlus>=0)

model.st (x>=0) model.st (lambdaMinus>=0)

model.st (x<=1)

model.solve(my solver) model.st(x>= 0)

model.st (x<=1)
—

model.solve(my_ solver)
T —


https://colab.research.google.com/drive/1hcv0wBjFBtFgwYE9TjfpVaKhHwLQyWZv?usp=sharing

Example: box uncertainty
(reformulation #2)

Consider the robust optimization problem:

maximize '

xZr

subject to  (a+2)'z<b,Vze Z
0<zx<1,

with Z:={zeR"|-2<2< 2}

e -ormulate an equivalent finite dimensional linear program
using the equivalent uncertainty set definition:

At >0, A" >0,
Z={zeR"IATR" A"R", z=At—-A",
AT +AT <3




Equivalent LP reformulation
for LP-RC

Theorem 2.7. : The LP-RC problem, with a polyhedral Z described through Wz < v (as in
assumption 2.2), is equivalent to the following linear program,

maximize  ppx + 1o — v A0)
r A}

subject to ~ WTAO) = — Pz — q
p?x%—vT)\(j) <r;,Vyj=1,...,J
WIAD) = Ply —q; Vi=1,...,J
AU >0, vi=0,...,J

where \9) € RS are additional certificates that need to be optimized jointly with .



SOCP reformulation for LP-RC
with ellipsoidal uncertainty

Verifying whether Vz € Z, 2t a2 < b — al z with
Z:={zeR"E 1z <~}

and > = 0 is equivalent to evaluating the optimal value of the
following problem

V= max Iz
zizT 3N 12<~2

One can demonstrate using Cauchy-Schwartz inequality
a’b < |[all2][b]|2

that this is equivalent to
U =~VaTSr = ~4||2 225




SOCP reformulation for LP-RC with
polyhedral set ellipsoidal uncertainty

Theorem. The LP-RC problem, with ellipsoidal set Z described is
equivalent to the following second order cone program

maximize pOT:C—I—TO —WH21/2(P0TZU‘|-QO)H2

X

subject to p?x - fyHZl/z(PjTa: —qgi)lle <, Vi=1,...,J.



