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Our robust nonlinear 
programming formulation

• We focus on the following formulation: 
 
 
 
where: 

•   

• g(x,z) is convex in x and concave in z  

•                   is a given non-empty, convex, and compact set 

• there exist a z0 in the relative interior of      intersect     

Chapter 6

Robust Nonlinear Programming

We focus on the reformulation of a robust constraint that involve non-linear functions. In
particular, let’s consider

g(x, z)  0 , 8 z 2 Z , (6.1)

where g(·, ·) is a mapping defined over the convex domain Xg ⇥ Zg (typically Rn ⇥ Rm) with
Xg ✓ Rn and Zg 2 Rm. Furthermore, we will assume that g(x, z) is convex in x for all z 2 Zg

and concave in z for all x 2 Xg while Z ⇢ Rm is a given non-empty, convex and compact
(i.e. bounded) set. Finally, it will be assumed that there exists a vector z0 2 Rm (possibly
the nominal value for the parameters of g(x, ·)) such that z0 is both in the relative interior of
Z and in the relative interior of the domain of g(x, ·), 8 x 2 X . This is a technical conditions
that will be needed to apply duality theory.

Remark 6.1. : Specifically, z0 2 relint(Z) means that there exists a ball centred at z0 and
of radius ✏ > 0 which projection on the a�ne space spanned by Z is included in Z. This
translates as the following conditions since Z is assumed convex.

9✏ > 0, 8z 2 Z, z0 � ✏((z � z0)/kz � z0k2) 2 Z} ,

Here is an illustration for Z 2 R2 when z0 = 0m.

Example of sets that include (or not) 0 in their relative interior
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Z ⇢ Rm



Relative interior definition
• There exists a ball centered at z0 and radius 𝜖 > 0 which 

projection on the affine space spanned by     is included 
in  
For convex uncertainty sets this translates: 
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Fenchel Robust Counterpart
Assumptions: 

• g(x,z) is convex in x and concave in z  
•                is a given non-empty, convex, and compact set 
• there exist a z0 in the relative interior of both      and     
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As seen in chapter 2, for any specific instance of constraint (6.1) it is possible to
apply duality theory to reformulate the robust constraint in the form

h(x,�)  0

� 2 ⇤(x) ,

where � is an additional variable that is used as a certificate that the robust constraint
is met, and where h(x,�) would be a new convex function in terms of x and �, and ⇤(x)
is the feasible set for �. Unfortunately, obtaining this reformulation through duality
arguments is a tedious process that needs to be reapplied each time the uncertainty
set or constraint function is modified.

6.1 The Fenchel Robust Counterpart

In [7], the authors present for the first time a method that can be used to obtain
such a reformulation much more e�ciently as it decomposes the dependence of the
reformulation between Z and g(·, ·). In particular, here is the main theorem for what
was intended to be called the Fenchel Robust Counterpart by A. Ben-Tal, D. den
Hertog, and J.-P. Vial:

Theorem 6.2. : The vector x 2 X satisfies the robust constraint (6.1) if and only if
x 2 X and v 2 Rm satisfy the single inequality

(FRC) �
⇤(v|Z) � g⇤(x, v)  0 , (6.2)

where the support function �⇤ is defined as

�
⇤(v|Z) := sup

z2Z
z

T
v

and the partial concave conjugate function g⇤ is defined as

g⇤(x, v) := inf
z2Zg

v
T
z � g(x, z) .

Proof. We will limit our proof to establishing that the FRC constraint (6.2) is at least
as severe as the robust constraint (6.1). To do this, we will reformulate the following
expression

 := max
z2Z

g(x, z) ,

using the Lagrangean function on the following equivalent problem

 = max
z02Zg , z2Z,z0=z

g(x, z0) .

Doing this we obtain

 = max
z02Zg , z2Z

inf
v

g(x, z0) � v
T (z0

� z) ,
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When     is bounded strong duality 
follows from Sion’s minimax theorem

• Coro #1: If both     and      are convex, one of them is bounded, and h(x,z) is 
concave in x & convex in z, then  
 

• Coro #2: If both     and     are convex, one of them is bounded, and h(x,z) is 
convex in x & concave in z, then 
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4.5 No value in delaying decisions

Actually, although the general prognostic of computability of ARC solutions is somewhat
negative, there are a few circumstances where these solutions can be obtained easily. Among
these circumstances are those where non-adjusted solutions are optimal thus making the ARC
model reduce to be equivalent to a model in which all decisions xt are independent of the
observations that were made, i.e. x

⇤
t (v(z)) = x

⇤
t (v(z0)) for all z and z

0 in Z. Note that these
are the situations in which the robust counterpart

(RC) maximize
{xt}Tt=1

inf
z2Z

TX

t=1

ct(z)T
xt + d(z) (4.11a)

subject to
TX

t=1

ajt(z)T
xt  bj(z) , 8 z 2 Z , 8 j = 1, . . . , J, (4.11b)

can be used to obtain a fixed policy that actually achieves the same worst-case performance
as an optimally adjusted policy. Here are the conditions that were established in [9] that can
help identify such situations.

Theorem 4.3. : The ARC model presented in equation (4.8) is equivalent to the simpler
robust counterpart model (4.11) where each xt 2 Rn is independent of z, when there exists a
partition of the uncertain vector z as z := [ z0 z1 z2 · · · zJ ]T such that

1. There exists nonempty convex compact sets Zj ⇢ Rdim zj such that

Z := Z0 ⇥ Z1 ⇥ Z2 ⇥ · · · ⇥ ZJ = {z | 9zi 2 Zi, z = [ z0 z1 z2 · · · zJ ]T }

2. There exists some M > 0 such that any feasible {xt}T
t=1 is such that the condition

kxt(vt(z))k1  M for all z 2 Z is either explicitly or implicitly imposed

3. The objective function is a function of z0, namely ct(z) = ct(z0) and dt(z) = dt(z0)

4. The functions involved in defining each constraint j only depend on zj, namely ajt(z) =
ajt(zj) and bjt(z) = ajt(zj)

Note that the theorem above is slightly more general as what is presented in [9] as it
accounts for multi-stage problems. We believe our proof is also simpler to follow as it exploits
a famous theorem that originates from zero-sum games called Sion’s minimax theorem.

Lemma 4.4. :(Sion’s minimax theorem [32]) Let X ⇢ Rn be a convex set and Z 2 Rm be a
compact convex set, and let h be a real-valued function on X ⇥ Z with

1. h(x, ·) lower semicontinuous and quasi-convex on Z, 8 x 2 X

2. h(·, z) upper semicontinuous and quasiconcave on X , 8 z 2 Z
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then
sup
x2X

min
z2Z

h(x, z) = min
z2Z

sup
x2X

h(x, z) .

In particular, the conclusion is valid if instead of conditions 1 and 2, one can verify that
h(x, ·) is convex on Z for all x 2 X , and h(·, z) is concave on X for all z 2 Z.

We are now ready for the proof of theorem 4.3.

Proof. We will restrict our attention to the case where the ARC model is feasible, otherwise
the two problems are necessarily infeasible and thus equivalent.

Step #1: Full adjustability In this context, we start our proof by demonstrating this
theorem in the case where vt(z) := z for all t (i.e. all decisions, even x1, can use the
information about the exact realization of z). In this case the ARC model is presented as

maximize
{xt(·)}Tt=1

inf
z2Z

TX

t=1

ct(z0)
T
xt(z) + d(z0)

subject to
TX

t=1

ajt(zj)
T
xt(z)  bj(zj) , 8 z 2 Z , 8 j = 1, . . . , J

kxt(z)k1  M , 8 t, 8 z 2 Z

where we made explicit the dependence of ct, d, ajt, and bjt on each of the members of
{z0, z1, · · · , zJ}. The optimal value of this model is equivalent to the optimal value (that we
will call  ) of the following robust two-stage problem

 := min
z2Z

h(z) ,

where h(z) is defined as

h(z) := max
{xt}Tt=1

TX

t=1

ct(z0)
T
xt + d(z0)

subject to
TX

t=1

ajt(zj)
T
xt  bj(zj) , 8 j = 1, . . . , J

kxtk1  M , 8 t .

By formulating the Lagrangian function of the inner maximization problem associated to
h(z), we obtain that

h(z) = max
{xt}Tt=1:kxtk1M, 8t

inf
��0

TX

t=1

ct(z0)
T
xt + d(z0) +

X

j

�j(bj(zj) �
X

t

ajt(zj)xt)

Referring to Sion’s minimax theorem, we can verify that the Lagrangian function presented
here is a�ne in both {xt}T

t=1 and �, and that the feasible set for {xt}T
t=1 is compact. Hence,

we can conclude that

h(z) = inf
��0

max
{xt}Tt=1:kxtk1M, 8t

TX

t=1

ct(z0)
T
xt + d(z0) +

X

j

�j(bj(zj) �
X

t

ajt(zj)xt) .

X

X Z
<latexit sha1_base64="rmTaJdXy6+Adv+RmY3Elhni8OT0="></latexit>

Z
<latexit sha1_base64="rmTaJdXy6+Adv+RmY3Elhni8OT0="></latexit>

sup
x2X

inf
z2Z

h(x, z) = inf
z2Z

sup
x2X

h(x, z)
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inf
x2X

sup
z2Z

h(x, z) = sup
z2Z

inf
x2X

h(x, z)
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where v 2 Rm. Following a basic theory of sequential games, which appears in lemma
10.6, we can easily establish that

  inf
v

max
z02Zg , z2Z

g(x, z0) � v
T (z0

� z) .

Yet, the right-hand side expression can be decomposed in two parts:

  inf
v

max
z02Zg

g(x, z0) � v
T
z

0

| {z }
�g⇤(x,v)

+max
z2Z

v
T
z

| {z }
�⇤(v|Z)

.

Hence, imposing that

9v 2 Rm
, �

⇤(v|Z) � g⇤(x, v)  0 ) g(x, z)  0 , 8 z 2 Z .

To demonstrate that this condition is necessary, one needs some constraint qualifi-
cation argument in order for strict duality to apply. This argument could easily come
from Lagrangian duality if we assumed that Zg was bounded (this would be without
loss of generality in cases where Z would be bounded). In [7], the authors employ
Fenchel duality to guarantee that

 = �
⇤(v|Z) � g⇤(x, v) .

We refer the reader to that article for more details. ⇤

Example 6.3. : Consider the following robust optimization constraint:

p(x)T z + s(x) � z
T
P (x)z  0 , 8 z 2 Z ,

where p : Rn
! Rm is an a�ne function of x, s : Rn

! R, and P (x) : Rn
! Rm⇥m,

and finally where
Z := {z 2 Rm

| z
T
Qz  r} ,

with Q 2 Rm⇥m a symmetric matrix and r 2 R.
After describing g(x, z) as g(x, z) := p(x)T z + s(x) � z

T
P (x)z and letting z0 = 0,

one needs to make the following assumptions in order to apply theorem 6.2:

• Impose that x 2 Xg with Xg := {x |P (x) ⌫ 0}, namely that we have the guaran-
tee that P (x) is positive semi-definite in order to make g(x, z) concave in z.

• Impose that Q � 0 and that r > 0, namely that Q is positive definite to ensure
that Z is convex and bounded, and that 0 2 relint(Z).

When applying theorem 6.2, we obtain that the constraint is equivalent to

9v 2 Rm
�

⇤(v|Z) � g⇤(x, v)  0 ,

yet we still need to identify properly what form the two conjugate functions take.
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• It’s really rather simple to obtain the robust counterpart 

under a different uncertainty set. Simply replace the 
conjugate of the support function. 

• Example: using Bz≤b instead of ellipsoid 
 
 
 
 
 
 

�⇤(v|Z) =
p
rkQ�1/2vk2
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Ellipsoidal set p
rkQ�1/2vk2 � t  0


P (x) (v � p(x))/2

(v � p(x))T /2 �s(z)� t

�
⌫ 0
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Programming under Polyhedron
• It’s really rather simple to obtain the robust counterpart 

under a different uncertainty set. Simply replace the 
conjugate of the support function. 

• Example: using Bz≤b instead of ellipsoid 
 
 
 
 
 
 

�⇤(v|Z) = inf
�:��0,BT�=v

bT�
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Polyhedral set bT�� t  0

BT� = v

� � 0


P (x) (v � p(x))/2
(v � p(x))T /2 �s(z)� t

�
⌫ 0
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In the above example, we can observe how the work of reformulating the constraint was
divided into two steps. This is a clear advantage as it allows one to easily modify his model
and recuperate the new formulation. One might for instance compare the solutions that
are obtained using di↵erent types of uncertainty sets. In each case, the only modifications
to the reformulated model would appear in the part that serves the purpose of evaluating
�
⇤(v|Z). As an example, the article establishes that in the case of using a polyhedron defined

as Bz  b, then one requires an additional decision vector � 2 Rm and obtains the following
constraints:

b
T
� � g⇤(x, v)  0

B
T
� = v

� � 0 ,

which translates in the context of our quadratic function to

b
T
� � t  0

B
T
� = v

� � 0


P (x) (v � p(x))/2
(v � p(x))T

/2 �s(x) � t

�
⌫ 0 .

The downside of employing the proposed Fenchel robust counterpart is that the conditions
that need to be imposed are a bit more severe then needed to obtain a tractable reformulation
of robust constraints. Indeed, by decomposing the influence of the uncertainty set and the
constraint some of the tractability of robust optimization is lost as illustrated in the following
example.

Example 6.4. : Consider the following robust optimization constraint:

p(x)T
z + s(x) � z

T
P (x)z  0 , 8 z 2 Z ,

where p : Rn ! Rm is an a�ne function of x, s : Rn ! R, and P (x) : Rn ! Rm⇥m, and
finally where

Z := {z 2 Rm | zT
Qz  r} ,

with Q 2 Rm⇥m a positive definite matrix, q 2 Rm, and r 2 R. In fact, it is well known that
this robust constraint has a tractable reformulation even in cases where there is no guarantee
that P (x) is positive semi-definite. Consider for instance imposing that there exists some
� � 0 for which

p(x)T
z + s(x) � z

T
P (x)z + �(r � z

T
Qz)  0 , 8 z 2 Rm

.

It is clear that any x that satisfy this will satisfy the robust constraint since this constraint is
stricter for z 2 Z. Yet, a famous version of the S-lemma (see theorem 2.2 in [29]) guarantees
that the two constraints are equivalent as long as r > 0 and Q has a single strictly positive
eigenvalue. Based on this lemma, it is therefore possible to reformulate the constraint as the
following linear matrix inequality:


P (x) + �Q �p(x)/2
�p(x)T

/2 �s(x) � r�

�
⌫ 0 .
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�p(x)T

/2 �s(x) � r�

�
⌫ 0 .9 � � 0
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In the above example, we can observe how the work of reformulating the constraint
was divided into two steps. This is a clear advantage as it allows one to easily modify
his model and recuperate the new formulation. One might for instance compare the
solutions that are obtained using di↵erent types of uncertainty sets. In each case, the
only modifications to the reformulated model would appear in the part that serves the
purpose of evaluating �⇤(v|Z). As an example, the article establishes that in the case of
using a polyhedron defined as Bz  b, then one requires an additional decision vector
� 2 Rm and obtains the following constraints:

b
T
� � g⇤(x, v)  0

B
T
� = v

� � 0 ,

which translates in the context of our quadratic function to

b
T
� � t  0

B
T
� = v

� � 0


P (x) (v � p(x))/2
(v � p(x))T/2 �s(x) � t

�
⌫ 0 .

The downside of employing the proposed Fenchel robust counterpart is that the
conditions that need to be imposed are a bit more restrictive then needed to obtain a
tractable reformulation of robust constraints. Indeed, by decomposing the influence of
the uncertainty set and the constraint some of the tractability of robust optimization
is lost as illustrated in the following example.

Example 6.4. : Consider the following robust optimization constraint:

p(x)T z + s(x) � z
T
P (x)z  0 , 8 z 2 Z ,

where p : Rn
! Rm is an a�ne function of x, s : Rn

! R, and P (x) : Rn
! Rm⇥m,

and finally where
Z := {z 2 Rm

| z
T
Qz  r} ,

with Q 2 Rm⇥m, q 2 Rm, and r 2 R. In fact, it is well known that this robust
constraint has a tractable reformulation even in cases where there is no guarantee that
P (x) is positive semi-definite. Consider for instance imposing that there exists some
� � 0 for which

p(x)T z + s(x) � z
T
P (x)z + �(r � z

T
Qz)  0 , 8 z 2 Rm

.

It is clear that any x that satisfy this will satisfy the robust constraint since this
constraint is stricter for z 2 Z. Yet, a famous version of the S-lemma (see theorem 2.2
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in [36]) guarantees that the two constraints are equivalent as long as there exists a z

such that zT
Qz < r (i.e. r > 0 and Q is symmetric and has a single strictly positive

eigenvalue). Based on this lemma, it is therefore possible to reformulate the constraint
as the following linear matrix inequality:


P (x) + �Q �p(x)/2
�p(x)T/2 �s(x) � r�

�
⌫ 0 .

This reformulation cannot be obtained using theorem 6.2 since here we allow g(x, z)
to be non-concave in z for some x 2 Xg.

We present below a list of useful theorems for employing the theory proposed in
theorem 6.2 in order to obtain the Fenchel Robust Counterpart. The first two theorems
identify a characterization of the support function for some simple polyhedra.

Theorem 6.5. : If Z := {z 2 Rm
| 0  z  1,

P
i
zi  ⇢}, then

�
⇤(v|Z) := inf

!2Rm,�2R

X

i

!i + ⇢�

subject to � � vi � !i , 8 i

� � 0, ! � 0 .

Hence, the robust counterpart takes the form:

9! 2 Rm
,� 2 R, v 2 Rm

,

8
<

:

P
i
!i + ⇢� � g⇤(x, v)  0

� � vi � !i , 8 i

� � 0, ! � 0
.

Proof. Simply put

�
⇤(v|Z) = sup

z2Z
v

T
z = sup

z

inf
��0,!�0,��0

v
T
z +

X

i

�izi +
X

i

!i(1 � zi) + �(⇢ �

X

i

zi)

= inf
��0,!�0,��0

sup
z

v
T
z +

X

i

�izi +
X

i

!i(1 � zi) + �(⇢ �

X

i

zi)

= inf
��0,!�0,��0

⇢ P
i
!i + ⇢� if vi + �i � !i � � = 0 for all i
1 otherwise

= inf
��0,w�0

⇢ P
i
!i + ⇢� if � � vi � !i for all i
1 otherwise

.

⇤
Theorem 6.6. : If Z := {z 2 Rm

| z � 0,
P

i
zi = 1}, then

�
⇤(v|Z) := inf

�2R
�

subject to � � vi , 8 i .

Hence, the robust counterpart takes the form:

9� 2 R, v 2 Rm
,

⇢
� � g⇤(x, v)  0
� � vi , 8 i

.
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We now express a theorem that allows one to derive the support function of an uncertainty
set known to be the a�ne projection of another set for which the support function is known.

Theorem 6.7. : If Z ⇢ Rm is an a�ne projection of Z1 ⇢ Rm1, namely that Z := {z 2
Rm | 9z

0 2 Z1, z = Az
0 + a0} for some A 2 Rm⇥m1 and a0 2 Rm, then �

⇤(v|Z) = a
T
0 v +

�
⇤(AT

v|Z1).

Proof. Simply put

�
⇤(v|Z) = sup

z2Z
v

T
z = sup

z02Z1

v
T (Az

0 + a0) = v
T
a0 + �

⇤(AT
v|Z1) .

⇤

We can now employ this relation to derive the support function of the popular budgeted
uncertainty set.

Corollary 6.8. : Consider using the budgeted uncertainty set Z := {z 2 Rm | � 1  z 
1,

P
i |zi|  �}, then the robust counterpart takes the form

X

i

!
+
i +

X

i

!
�
i + ⇢� � f⇤(x, v)  0

� � vi � !
+
i , 8 i

� � �vi � !
�
i , 8 i

! � 0, � � 0 ,

where !
+ 2 Rm, !

� 2 Rm, � 2 R, and v 2 Rm.

Proof. First, observe how the budgeted uncertainty set can be described as the following
projection z = [I � I]z0 for z

0 2 Z1 := {z 2 R2m | z � 0,
P

i zi  �}. Then, based on
theorems 6.5 and 6.7, we can conclude that

�
⇤(v|Z) = �

⇤([I � I]T v|Z1) .

Hence, we can state that the robust counterpart takes the form

X

i

!
+
i +

X

i

!
�
i + ⇢� � f⇤(x, v)  0

� � vi � !
+
i , 8 i

� � �vi � !
�
i , 8 i

! � 0, � � 0 .

⇤

Finally, we work out a theorem that allows to easily manipulate known conjugate functions
to obtain conjugate functions for functions that are obtained by a�ne transformation.

Theorem 6.9. : If g(x, z) is a positive a�ne mapping of g
0(x, z), namely that g(x, z) :=

↵g
0(x, z) + � for some ↵ > 0, then g⇤(x, v) = ↵g

0
⇤(x, v/↵) � �.
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!
+
i +

X

i

!
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i

!
+
i +

X

i

!
�
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�
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Finally, we work out a theorem that allows to easily manipulate known conjugate functions
to obtain conjugate functions for functions that are obtained by a�ne transformation.

Theorem 6.9. : If g(x, z) is a positive a�ne mapping of g
0(x, z), namely that g(x, z) :=

↵g
0(x, z) + � for some ↵ > 0, then g⇤(x, v) = ↵g

0
⇤(x, v/↵) � �.
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Proof. Simply put

�
⇤(v|Z) = sup

z2Z
v

T
z = sup

z

inf
�,�

v
T
z +

X

i

�izi + �(1 �

X

i

zi)

= inf
��0,�

sup
z

v
T
z +

X

i

�izi + �(1 �

X

i

zi)

= inf
��0,�

⇢
� if vi + �i � � = 0 for all i
1 otherwise

= inf
�

⇢
� if � � vi for all i
1 otherwise

.

⇤

We now express a theorem that allows one to derive the support function of an
uncertainty set known to be the a�ne projection of another set for which the support
function is known.

Theorem 6.7. : If Z ⇢ Rm is an a�ne projection of Z1 ⇢ Rm1, namely that Z :=
{z 2 Rm

| 9z
0
2 Z1, z = Az

0 + a0} for some A 2 Rm⇥m1 and a0 2 Rm, then �
⇤(v|Z) =

a
T

0
v + �

⇤(AT
v|Z1).

Proof. Simply put

�
⇤(v|Z) = sup

z2Z
v

T
z = sup

z02Z1

v
T (Az0 + a0) = v

T
a0 + �

⇤(AT
v|Z1) .

⇤

We can now employ this relation to derive the support function of the popular
budgeted uncertainty set.

Corollary 6.8. : Consider using the budgeted uncertainty set Z := {z 2 Rm
| � 1 

z  1,
P

i
|zi|  �}, then

�
⇤(v|Z) := inf

!+2Rm,!�2Rm,�2R

X

i

!
+

i
+

X

i

!
�
i
+ ⇢�

subject to � � vi � !
+

i
, 8 i

� � �vi � !
�
i
, 8 i

! � 0, � � 0 .

Hence, the robust counterpart takes the form:

9!
+

2 Rm
,!

�
2 Rm

,� 2 R, v 2 Rm
,

8
>><

>>:

P
i
!

+

i
+

P
i
!

�
i
+ ⇢� � g⇤(x, v)  0

� � vi � !
+

i
, 8 i

� � �vi � !
�
i
, 8 i

!
+

� 0, !�
� 0, � � 0

.
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6.2 Reference Tables from Ben-Tal et al. 2015

Table 6.1: Table of reformulations for uncertainty sets (Table 1 in [8])

Uncertainty region Z Support function �
⇤(v|Z)

Box kzk1  ⇢ ⇢kvk1

Ball kzk2  ⇢ ⇢kvk2

Polyhedral b � Bz � 0 infw�0:BT w=v b
T
w

Cone b � Bz 2 C infw2C⇤:BT w=v b
T
w

KL-Divergence
P

l
zl ln

⇣
zl

z
0
l

⌘
 ⇢ infu�0

P
l
z

0

l
ue

(vl/u)�1 + ⇢u

Geometric prog.
P

i
↵ie

(di)
T

z
 ⇢ infu�0, w�0:

P
i
diwi=v

P
i
{wi ln

⇣
wi

↵iu

⌘
� wi} + ⇢u

Intersection Z = \iZi inf{wi}:
P

i
wi=v

P
i
�

⇤(wi
|Zi)

Example
Zk = {z|kzkk  ⇢k}

k = 1, 2
inf(w1,w2):w1+w2=v ⇢1kw

1
k1 + ⇢2kw

2
k2

Minkowski sum Z = Z1 + · · · + ZK

P
i
�

⇤(v|Zi)

Example
Z1 = {z | kzk1  ⇢1}

Z2 = {z | kzk2  ⇢2}
⇢1kvk1 + ⇢2kvk2

Convex hull Z = conv(Z1, . . . ,ZK) maxi �
⇤(v|Zi)

Example
Z1 = {z | kzk1  ⇢1}

Z2 = {z | |z � z
0
k2  ⇢2}

max{⇢1kvk1, (z0)Tv + ⇢2kv|k2}
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Table 6.2: Table of reformulations for constraint functions (Table 2 in [8])

Constraint function g(x, z) Partial concave conjugate g⇤(x, v)

Linear in z z
T
g(x)

⇢
0 if v = g(x)

�1 otherwise

Concave in z,
separable in z and x

g(z)Tx sup{si}n
i=1:

P
n

i=1 si=v

P
i
xi(gi)⇤(si

/xi)

Example �
P

i

1

2
(zT

Qiz)xi sup{si}n
i=1:

P
n

i=1 si=v
�

1

2

P
n

i=1

(s
i
)
T

Q
�1
i

s
i

xi

Sum of functions
P

i
gi(x, z) sup{si}n

i=1:
P

i
si=v

P
i
(gi)⇤(x, si)

Sum of separable
functions

P
i
gi(x, zi)

P
n

i=1
(gi)⇤(x, vi)

Example
�

P
m

i=1
x

zi

i
,

xi > 1, 0  z  1

( P
m

i=1

⇣
vi

ln xi

ln �vi

ln xi

�
vi

ln xi

⌘
if v  0

�1 otherwise

Exponential in z
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v ln(�v/g(x))� v if v  0

�1 otherwise
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�g(x)ez with g(x) > 0, 8x
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where x 2 Rn identifies how many exposures per day an ad will have on each web site, for
each website i, hi(·) expresses an expected number of converted clients that originated from
site i, and ci is the cost of a single exposure on each website, and B is the total daily budget
for the ad campaign.

In practice, it is particularly di�cult to estimate the conversion function hi(·) for each site.
It is however expected that the conversion rate (i.e. the number of converted customer per
additional ad) decreases as more ads are being displayed. For this reason, it is reasonable to
think that the function hi(·) would behave as hi(xi) := ci(1+xi/di)ai �ci for some 0 < ai  1,
ci > 0, and di > 0. Here are a few examples of such a parametric function.

Figure of the converted number of customers per ad
displayed on a website according to hi(xi) := 30(1 + xi/1000)ai � 30

0"

5"

10"

15"

20"

25"

30"

0" 5000" 10000" 15000" 20000"

N
um

be
r'o

f'c
on

ve
rs
io
ns
'

Number'of'exposures'

a=0,2"

a=0,1875"

a=0,1625"

a=0,15"

Question: Present a tractable reformulation for the above problem considering that the un-
certainty set for the vector a 2 Rn is U := {a 2 Rn | 9z 2 Rn

, z � 0,
P

i zi  1,
P

i zi ln(zi) 
⇢, a = ā(1 � 0.25z)}? (Hint: you can assume that the worst-case for a always occurs whenP

i zi = 1.)
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where x 2 Rn identifies how many exposures per day an ad will have on each web site, for
each website i, hi(·) expresses an expected number of converted clients that originated from
site i, and ci is the cost of a single exposure on each website, and B is the total daily budget
for the ad campaign.

In practice, it is particularly di�cult to estimate the conversion function hi(·) for each site.
It is however expected that the conversion rate (i.e. the number of converted customer per
additional ad) decreases as more ads are being displayed. For this reason, it is reasonable to
think that the function hi(·) would behave as hi(xi) := ci(1+xi/di)ai �ci for some 0 < ai  1,
ci > 0, and di > 0. Here are a few examples of such a parametric function.

Figure of the converted number of customers per ad
displayed on a website according to hi(xi) := 30(1 + xi/1000)ai � 30
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certainty set for the vector a 2 Rn is U := {a 2 Rn | 9z 2 Rn
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i zi ln(zi) 
⇢, a = ā(1 � 0.25z)}? (Hint: you can assume that the worst-case for a always occurs whenP

i zi = 1.)

U1 := {a 2 Rn | 9z 2 Rn, 0  z  1,
X

i

zi  �, ai = āi(1� 0.25zi) , 8 i}

ā 2 [0, 1]n
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6.3 Exercises

Exercise 6.1. (Conditional Value at Risk Portfolio with uncertain proba-

bilities)

Consider the Conditional Value at Risk minimization problem:

minimize
x,t

CVaR↵(r
T
x)

X

i

xi = 1

x � 0 ,

where x 2 Rn, and the uncertainty about r 2 Rn takes the form of a set of equiprobable
scenarios {r̄k}k=1K. Now, let us be worried that the uniform distribution might not
be the rights one for this problem. Instead we would like to minimize the worst-case
CVaR that might be achieved under the following uncertainty set.

D(⇢) := {p 2 RK
| p � 0,

X

k

pk = 1,
KX

k=1

pk log

✓
pk

1/K

◆
 ⇢} .

Note that this set looks at distributions that diverge by at most ⇢ from the uniform
distribution. In this context, the robust optimization problem might look like

minimize
x,t

t (6.3a)

CVaR↵(r
T
x; p)  t , 8 p 2 D(⇢) (6.3b)X

i

xi = 1 (6.3c)

x � 0 , (6.3d)

where CVaR↵(rT
x; p) := infs s + (1/↵)

P
K

k=1
pk max(�r̄

T

k
z � s; 0) with {p 2 RK

| p �

0,
P

k
pk = 1} as domain which ensures the convexity in x and concavity in p.

Question: Derive a tractable reformulation of this problem as a convex optimization
problem of finite dimension ?

Exercise 6.2. (Planning an advertisement campaign with exposure rate un-

certainty)

Consider the problem of investing in an online ad campaign in order to do the promo-
tion of a new app for the Ipad.

maximize
x

X

i

hi(x)

subject to
X

i

pixi  B

x � 0 ,



Exercise


