Chapter 6:

Robust Nonlinear Programming

Our robust nonlinear programming formulation

- We focus on the following formulation:

$$
g(x, z) \leq 0, \forall z \in \mathcal{Z}
$$

where:

- $g(\cdot, \cdot)$ is a mapping defined over the convex domain $\mathcal{X}_{g} \times \mathcal{Z}_{g}$
- $g(x, z)$ is convex in x and concave in z
- $\mathcal{Z} \subset \mathbb{R}^{m}$ is a given non-empty, convex, and compact set
- there exist a z_{0} in the relative interior of \mathcal{Z} intersect \mathcal{Z}_{g}

Relative interior definition

- There exists a ball centered at z_{0} and radius $\epsilon>0$ which projection on the affine space spanned by \mathcal{Z} is included in \mathcal{Z}
For convex uncertainty sets this translates:

$$
\left.\exists \epsilon>0, \forall z \in \mathcal{Z}, z_{0}-\epsilon\left(\left(z-z_{0}\right) /\left\|z-z_{0}\right\|_{2}\right) \in \mathcal{Z}\right\}
$$

$\mathbf{0} \notin \operatorname{relint}\left(\mathcal{Z}_{1}\right)$
$\mathbf{0} \in \operatorname{relint}\left(\mathcal{Z}_{2}\right)$
$\mathbf{0} \in \operatorname{relint}\left(\mathcal{Z}_{3}\right)$

Fenchel Robust Counterpart

Assumptions:

- $g(x, z)$ is convex in x and concave in z
- $\mathcal{Z} \subset \mathbb{R}^{m}$ is a given non-empty, convex, and compact set
- there exist a z_{0} in the relative interior of both \mathcal{Z} and \mathcal{Z}_{g}

Theorem 6.2. : The vector $x \in \mathcal{X}$ satisfies the robust constraint (6.1) if and only if $x \in \mathcal{X}$ and $v \in \mathbb{R}^{m}$ satisfy the single inequality

$$
\begin{equation*}
(F R C) \quad \delta^{*}(v \mid \mathcal{Z})-g_{*}(x, v) \leq 0 \tag{6.2}
\end{equation*}
$$

where the support function δ^{*} is defined as

$$
\delta^{*}(v \mid \mathcal{Z}):=\sup _{z \in \mathcal{Z}} z^{T} v
$$

and the partial concave conjugate function g_{*} is defined as

$$
g_{*}(x, v):=\inf _{z \in \mathcal{Z}_{g}} v^{T} z-g(x, z)
$$

When \mathcal{Z} is bounded strong duality follows from Sion's minimax theorem

Lemma 4.4. :(Sion's minimax theorem [32]) Let $\mathcal{X} \subset \mathbb{R}^{n}$ be a convex set and $\mathcal{Z} \in \mathbb{R}^{m}$ be a compact convex set, and let h be a real-valued function on $\mathcal{X} \times \mathcal{Z}$ with

1. $h(x, \cdot)$ lower semicontinuous and quasi-convex on $\mathcal{Z}, \forall x \in \mathcal{X}$
2. $h(\cdot, z)$ upper semicontinuous and quasiconcave on $\mathcal{X}, \forall z \in \mathcal{Z}$ then

$$
\sup _{x \in \mathcal{X}} \min _{z \in \mathcal{Z}} h(x, z)=\min _{z \in \mathcal{Z}} \sup _{x \in \mathcal{X}} h(x, z) .
$$

- Coro \#1: If both \mathcal{X} and \mathcal{Z} are convex, one of them is bounded, and $h(x, z)$ is concave in x \& convex in z, then

$$
\sup _{x \in \mathcal{X}} \inf _{z \in \mathcal{Z}} h(x, z)=\inf _{z \in \mathcal{Z}} \sup _{x \in \mathcal{X}} h(x, z)
$$

- Coro \#2: If both \mathcal{X} and \mathcal{Z} are convex, one of them is bounded, and $h(x, z)$ is convex in x \& concave in z , then

$$
\inf _{x \in \mathcal{X}} \sup _{z \in \mathcal{Z}} h(x, z)=\sup _{z \in \mathcal{Z}} \inf _{x \in \mathcal{X}} h(x, z)
$$

Example : Quadratic Programming

Example 6.3. : Consider the following robust optimization constraint:

$$
p(x)^{T} z+s(x)-z^{T} P(x) z \leq 0, \forall z \in \mathcal{Z},
$$

where $p: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an affine function of $x, s: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $P(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times m}$, and finally where

$$
\mathcal{Z}:=\left\{z \in \mathbb{R}^{m} \mid z^{T} Q z \leq r\right\},
$$

with $Q \in \mathbb{R}^{m \times m}$ a symmetric matrix and $r \in \mathbb{R}$.
After describing $g(x, z)$ as $g(x, z):=p(x)^{T} z+s(x)-z^{T} P(x) z$ and letting $z_{0}=0$, one needs to make the following assumptions in order to apply theorem 6.2:

- Impose that $x \in \mathcal{X}_{g}$ with $\mathcal{X}_{g}:=\{x \mid P(x) \succeq 0\}$, namely that we have the guarantee that $P(x)$ is positive semi-definite in order to make $g(x, z)$ concave in z.
- Impose that $Q \succ 0$ and that $r>0$, namely that Q is positive definite to ensure that \mathcal{Z} is convex and bounded, and that $0 \in \operatorname{relint}(\mathcal{Z})$.

When applying theorem 6.2, we obtain that the constraint is equivalent to

$$
\exists v \in \mathbb{R}^{m} \delta^{*}(v \mid \mathcal{Z})-g_{*}(x, v) \leq 0
$$

Example : Quadratic

Programming under Polyhedron

- It's really rather simple to obtain the robust counterpart under a different uncertainty set. Simply replace the conjugate of the support function.
- Example: using Bzsb instead of ellipsoid

Ellipsoidal set

$$
\sqrt{r}\left\|Q^{-1 / 2} v\right\|_{2}-t \leq 0
$$

$$
\delta^{*}(v \mid \mathcal{Z})=\sqrt{r}\left\|Q^{-1 / 2} v\right\|_{2} \longrightarrow\left[\begin{array}{cc}
P(x) & (v-p(x)) / 2 \\
(v-p(x))^{T} / 2 & -s(z)-t
\end{array}\right] \succeq 0
$$

Example : Quadratic

Programming under Polyhedron

- It's really rather simple to obtain the robust counterpart under a different uncertainty set. Simply replace the conjugate of the support function.
- Example: using Bzsb instead of ellipsoid

Polyhedral set

$$
\delta^{*}(v \mid \mathcal{Z})=\inf _{\lambda: \lambda \geq 0, B^{T} \lambda=v} b^{T} \lambda \longrightarrow \begin{aligned}
& B^{T} \lambda=v \\
& \lambda \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& b^{T} \lambda-t \leq 0 \\
& B^{T} \lambda=v \\
& \lambda \geq 0 \\
& {\left[\begin{array}{cc}
P(x) & (v-p(x)) / 2 \\
(v-p(x))^{T} / 2 & -s(z)-t
\end{array}\right] \succeq 0}
\end{aligned}
$$

Some tractable reformulation are beyond the reach of FRC

Example 6.4. : Consider the following robust optimization constraint:

$$
p(x)^{T} z+s(x)-z^{T} P(x) z \leq 0, \forall z \in \mathcal{Z},
$$

where $p: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an affine function of $x, s: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and $P(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times m}$, and finally where

$$
\mathcal{Z}:=\left\{z \in \mathbb{R}^{m} \mid z^{T} Q z \leq r\right\},
$$

with $Q \in \mathbb{R}^{m \times m}, q \in \mathbb{R}^{m}$, and $r \in \mathbb{R}$.

- S-lemma can be used to demonstrate that this RC is equivalent to

$$
\exists \lambda \geq 0 \quad\left[\begin{array}{cc}
P(x)+\lambda Q & -p(x) / 2 \\
-p(x)^{T} / 2 & -s(x)-r \lambda
\end{array}\right] \succeq 0
$$

even when $\mathrm{P}(\mathrm{x})$ is not PSD as long as $\bar{z}^{T} Q \bar{z}<r$ for some \bar{z}.

Some useful theorems

Theorem 6.5. : If $\mathcal{Z}:=\left\{z \in \mathbb{R}^{m} \mid 0 \leq z \leq 1, \sum_{i} z_{i} \leq \rho\right\}$, then

$$
\begin{aligned}
\delta^{*}(v \mid \mathcal{Z}):=\inf _{\omega \in \mathbb{R}^{m}, \lambda \in \mathbb{R}} & \sum_{i} \omega_{i}+\rho \lambda \\
& \text { subject to } \\
& \lambda \geq v_{i}-\omega_{i}, \forall i \\
& \lambda \geq 0, \omega \geq 0 .
\end{aligned}
$$

Theorem 6.7. : If $\mathcal{Z} \subset \mathbb{R}^{m}$ is an affine projection of $\mathcal{Z}_{1} \subset \mathbb{R}^{m_{1}}$, namely that $\mathcal{Z}:=\{z \in$ $\left.\mathbb{R}^{m} \mid \exists z^{\prime} \in \mathcal{Z}_{1}, z=A z^{\prime}+a_{0}\right\}$ for some $A \in \mathbb{R}^{m \times m_{1}}$ and $a_{0} \in \mathbb{R}^{m}$, then $\delta^{*}(v \mid \mathcal{Z})=a_{0}^{T} v+$ $\delta^{*}\left(A^{T} v \mid \mathcal{Z}_{1}\right)$.

Theorem 6.9. : If $g(x, z)$ is a positive affine mapping of $g^{\prime}(x, z)$, namely that $g(x, z):=$ $\alpha g^{\prime}(x, z)+\beta$ for some $\alpha>0$, then $g_{*}(x, v)=\alpha g_{*}^{\prime}(x, v / \alpha)-\beta$.

Other useful theorems

Corollary 6.8. : Consider using the budgeted uncertainty set $\mathcal{Z}:=\left\{z \in \mathbb{R}^{m} \mid-1 \leq\right.$ $\left.z \leq 1, \sum_{i}\left|z_{i}\right| \leq \Gamma\right\}$, then

$$
\begin{aligned}
\delta^{*}(v \mid \mathcal{Z}):=\quad \inf _{\omega^{+} \in \mathbb{R}^{m}, \omega^{-} \in \mathbb{R}^{m}, \lambda \in \mathbb{R}} & \sum_{i} \omega_{i}^{+}+\sum_{i} \omega_{i}^{-}+\rho \lambda \\
\text { subject to } & \lambda \geq v_{i}-\omega_{i}^{+}, \forall i \\
& \lambda \geq-v_{i}-\omega_{i}^{-}, \forall i \\
& \omega \geq 0, \lambda \geq 0 .
\end{aligned}
$$

Hence, the robust counterpart takes the form:

$$
\exists \omega^{+} \in \mathbb{R}^{m}, \omega^{-} \in \mathbb{R}^{m}, \lambda \in \mathbb{R}, v \in \mathbb{R}^{m}, \quad\left\{\begin{array}{l}
\sum_{i} \omega_{i}^{+}+\sum_{i} \omega_{i}^{-}+\rho \lambda-g_{*}(x, v) \leq 0 \\
\lambda \geq v_{i}-\omega_{i}^{+}, \forall i \\
\lambda \geq-v_{i}-\omega_{i}^{-}, \forall i \\
\omega^{+} \geq 0, \omega^{-} \geq 0, \lambda \geq 0
\end{array}\right.
$$

Table 6.1: Table of reformulations for uncertainty sets (Table 1 in [8])

Uncertainty region	\mathcal{Z}	Support function $\delta^{*}(v \mid \mathcal{Z})$								
Box	$\\|z\\|_{\infty} \leq \rho$	$\rho\\|v\\|_{1}$								
Ball	$\\|z\\|_{2} \leq \rho$	$\rho\\|v\\|_{2}$								
Polyhedral	$b-B z \geq 0$	$\inf _{w \geq 0: B^{T} w=v} b^{T} w$								
Cone	$b-B z \in C$	$\inf _{w \in C^{*}: B^{T} w=v} b^{T} w$								
KL-Divergence	$\sum_{l} z_{l} \ln \left(\frac{z_{l}}{z_{l}^{0}}\right) \leq \rho$	$\inf _{u \geq 0} \sum_{l} z_{l}^{0} u e^{\left(v_{l} / u\right)-1}+\rho u$								
Geometric prog.	$\sum_{i} \alpha_{i} e^{\left(d_{i}\right)^{T} z} \leq \rho$	$\inf _{u \geq 0, w \geq 0: \sum_{i} d_{i} w_{i}=v} \sum_{i}\left\{w_{i} \ln \left(\frac{w_{i}}{\alpha_{i} u}\right)-w_{i}\right\}+\rho u$								
Intersection	$\mathcal{Z}=\cap_{i} \mathcal{Z}_{i}$	$\inf _{\left\{w_{i}\right\}: \sum_{i} w_{i}=v} \sum_{i} \delta^{*}\left(w^{i} \mid \mathcal{Z}_{i}\right)$								
Example	$\begin{aligned} & \mathcal{Z}_{k}=\left\{z \mid\\|z\\|_{k} \leq \rho_{k}\right\} \\ & \quad k=1,2 \end{aligned}$	$\inf _{\left(w^{1}, w^{2}\right): w^{1}+w^{2}=v} \rho_{1}\left\\|w^{1}\right\\|_{\infty}+\rho_{2}\left\\|w^{2}\right\\|_{2}$								
Minkowski sum	$\mathcal{Z}=\mathcal{Z}_{1}+\cdots+\mathcal{Z}_{K}$	$\sum_{i} \delta^{*}\left(v \mid \mathcal{Z}_{i}\right)$								
Example	$\begin{aligned} & \mathcal{Z}_{1}=\left\{z \mid\\|z\\|_{\infty} \leq \rho_{\infty}\right\} \\ & \mathcal{Z}_{2}=\left\{z \mid\\|z\\|_{2} \leq \rho_{2}\right\} \end{aligned}$	$\rho_{\infty}\\|v\\|_{1}+\rho_{2}\\|v\\|_{2}$								
Convex hull	$\mathcal{Z}=\operatorname{conv}\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{K}\right)$	$\max _{i} \delta^{*}\left(v \mid \mathcal{Z}_{i}\right)$								
Example	$\begin{aligned} & \mathcal{Z}_{1}=\left\{z \mid\\|z\\|_{\infty} \leq \rho_{\infty}\right\} \\ & \mathcal{Z}_{2}=\left\{z\| \| z-z^{0} \\|_{2} \leq \rho_{2}\right\} \end{aligned}$	$\max \left\{\rho_{\infty}\\|v\\|_{1},\left(z^{0}\right)^{T} v+\rho_{2}\\|v\\| \\|_{2}\right\}$								

Table 6.2: Table of reformulations for constraint functions (Table 2 in [8])

Constraint function	$g(x, z)$	Partial concave conjugate $g_{*}(x, v)$
Linear in z	$z^{T} g(x)$	$\left\{\begin{array}{cl}0 & \text { if } v=g(x) \\ -\infty & \text { otherwise }\end{array}\right.$

Concave in z,
separable in z and $x \quad g(z)^{T} x \quad \sup _{\left\{s^{i}\right\}_{i=1}^{n}: \sum_{i=1}^{n} s^{i}=v} \sum_{i} x_{i}\left(g_{i}\right)_{*}\left(s^{i} / x_{i}\right)$
Example $\quad-\sum_{i} \frac{1}{2}\left(z^{T} Q_{i} z\right) x_{i} \quad \sup _{\left\{s^{i}\right\}_{i=1}^{n}: \sum_{i=1}^{n} s^{i}=v}-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(s^{i}\right)^{T} Q_{i}^{-1} s^{i}}{x_{i}}$
Sum of functions $\quad \sum_{i} g_{i}(x, z) \quad \sup _{\left\{s^{i}\right\}_{i=1}^{n}: \sum_{i} s^{i}=v} \sum_{i}\left(g_{i}\right)_{*}\left(x, s^{i}\right)$
Sum of separable functions

Example

$$
\begin{aligned}
& \sum_{i} g_{i}\left(x, z_{i}\right) \quad \sum_{i=1}^{n}\left(g_{i}\right)_{*}\left(x, v_{i}\right) \\
& \begin{array}{ll}
-\sum_{i=1}^{m} x_{i}^{z_{i}}, \\
x_{i}>1,0 \leq z \leq 1
\end{array}\left\{\begin{array}{cl}
\sum_{i=1}^{m}\left(\frac{v_{i}}{\ln x_{i}} \ln \frac{-v_{i}}{\ln x_{i}}-\frac{v_{i}}{\ln x_{i}}\right) & \text { if } v \leq 0 \\
-\infty & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Exponential in z $-g(x) e^{z}$ with $g(x)>0, \forall x\left\{\begin{array}{cl}v \ln (-v / g(x))-v & \text { if } v \leq 0 \\ -\infty & \text { otherwise }\end{array}\right.$

Planning an ad campaign with exposure rate uncertainty

Figure of the converted number of customers per ad
displayed on a website according to $h_{i}\left(x_{i}\right):=30\left(1+x_{i} / 1000\right)^{a_{i}}-30$

Planning an ad campaign

 with exposure rate uncertainty- Derive a tractable reformulation for the robust counterpart of this problem:

$$
\begin{array}{cl}
\underset{x}{\operatorname{maximize}} & \sum_{i} h_{i}(x) \\
\text { subject to } & \sum_{i} p_{i} x_{i} \leq B \\
& x \geq 0,
\end{array}
$$

with

$$
h_{i}\left(x_{i}\right):=c_{i}\left(1+x_{i} / d_{i}\right)^{a_{i}}-c_{i}
$$

$\mathcal{U}_{1}:=\left\{a \in \mathbb{R}^{n} \mid \exists z \in \mathbb{R}^{n}, 0 \leq z \leq 1, \sum_{i} z_{i} \leq \Gamma, a_{i}=\bar{a}_{i}\left(1-0.25 z_{i}\right), \forall i\right\}$
where $\bar{a} \in[0,1]^{n}$

Exercise

Exercise 6.3. (More robust non-linear reformulations)
Consider the robust optimization problem:

$$
\begin{array}{cl}
\underset{x}{\operatorname{maximize}} & \min _{z \in \mathcal{Z}} \sum_{i} x_{i} \exp \left(z_{i}\right) \\
\text { subject to } & \sum_{i} x_{i} \leq 1 \\
& x \geq 0
\end{array}
$$

where

$$
\mathcal{Z}:=\left\{z \in \mathbb{R}^{n} \mid \exists v \in[-1,1]^{n}, w \in[-1,1], z=\mu+Q(v+w),\|v\|_{1} \leq \Gamma\right\} .
$$

Question: Derive a tractable reformulation of this problem as a convex optimization problem of finite dimension?

