Chapter 6:

Robust Nonlinear Programming



Our robust nonlinear
orogramming formulation

* We focus on the following formulation:
g(x,z) <0,Vze Z
where:
e g(+,-) is a mapping defined over the convex domain X, x Z,
* g(Xx,z)is convex in x and concave in z

« Z C R™ is a given non-empty, convex, and compact set

e there exist a zo in the relative interior of Z intersect 24



Relative Interior definition

e [here exists a ball centered at zo and radius € > 0 which
projection on the affine space spanned by Z is included
in 2
For convex uncertainty sets this translates:

de > 0,Vz € Z,20 —e((z — 20)/||z — 20]|2) € Z}

Zo Zo

0

Z 4 Z

0 ¢ relint(Z4) 0 € relint(Z2s) 0 € relint(Z3)



Fenchel Robust Counterpart

Assumptions:

* g(x,z)is convex in x and concave in z
« Z CR™ isa given non-empty, convex, and compact set
* there exist a zo in the relative interior of both Z and Z,

~Theorem 6.2. : The vector x € X satisfies the robust constraint (6.1) if and only if
r € X and v € R™ satisfy the single inequality

(FRC) 0"(v|Z) — gula,v) <0, (6.2)
where the support function 0* is defined as

§*(v|Z) :=sup 21 v

z€Z

and the partial concave conjugate function g, 1S defined as

. — inf v'z — .
g« (, v) Inf vz g9(x, 2)



When Z Is bounded strong duality
follows from Sion’s minimax theorem

Lemma 4.4. :(Sion’s minimax theorem [32]) Let X C R™ be a convex set and Z € R™ be a
compact convex set, and let h be a real-valued function on X X Z with

1. h(x,-) lower semicontinuous and quasi-convex on Z,Vx € X

2. h(-, z) upper semicontinuous and quasiconcave on X,V z € Z

then

sup min h(zxz,z) = minsup h(z, z) .
sup g hl@, ) = mip sup Al 2)

« Coro #1: If both X and Z are convex, one of them is bounded, and h(x,z) is
concave in x & convex in z, then

S int A = inf sup h
wpigihes) = gl uphia.2)

« Coro #2: If both X and Z are convex, one of them is bounded, and h(x,z) is
convex in X & concave In z, then

Inf h = inf A
S



Example : Quadratic
Programming

Example 6.3. : Consider the following robust optimization constraint:
p(x) 'z +s(x) - 2Px)2<0,Vze Z,

where p : R” — R™ is an affine function of z, s : R” — R, and P(z) : R* — R™*™,
and finally where
Z={zecR"|2'Qz<r},

with () € R™*™ a symmetric matrix and r € R.
After describing g(z, 2) as g(z, z) := p(z)'z + s(x) — 21 P(x)z and letting 2y = 0,
one needs to make the following assumptions in order to apply theorem 6.2:

e Impose that z € X, with X, := {« | P(x) = 0}, namely that we have the guaran-
tee that P(x) is positive semi-definite in order to make g(x, z) concave in z.

e Impose that () > 0 and that r > 0, namely that () is positive definite to ensure
that Z is convex and bounded, and that 0 € relint(Z).

When applying theorem 6.2, we obtain that the constraint is equivalent to

Juv € R™ 0" (v|2) — gu(x,v) <0,



Example : Quadratic
Programming under Polyhedron

* |t's really rather simple to obtain the robust counterpart
under a different uncertainty set. Simply replace the
conjugate of the support function.

 Example: using Bz<b instead of ellipsoid

Ellipsoidal set
P VAIQ 2]l — £ < 0

6 (0| 2) = Vrl|QT 0| e—lp P(z) (v—=p))/2 |
(v—p@)"/2 —s(z)-t |7



Example : Quadratic
Programming under Polyhedron

* |t's really rather simple to obtain the robust counterpart
under a different uncertainty set. Simply replace the
conjugate of the support function.

 Example: using Bz<b instead of ellipsoid

Polyhedral set b'A—t<0
FZ) = il DA gy DT
A:A>0,BT A\=v A>0

P(x) (v —p(z))/2
(v—p(@)"/2  —s(z) -t



Some tractable reformulation
are beyond the reach of FRC

Example 6.4. : Consider the following robust optimization constraint:

p(@) 2z +s(x) —2'P(x)2<0,Vze Z,

where p : R® — R™ is an affine function of x, s : R® — R, and P(z) : R® — R"™*"™ and

finally where

Z:={zcR™|'Qz<r},

with () € R™"™, ¢q € R™, and r € R.

e S-lemma can be used to demonstrate that this RC is

equivalent to

3> 0 - P(x) + \Q

- —p(x)"/2

—p(x)/2

—s(x) —rA

~ 0

even when P(x) is not PSD as long as ZTQZ < rfor some Z.



Some useful theorems

Theorem 6.5. : I[f Z:={2 e R"|0<2<1, > 2 <p}, then

5*(v| Z) = inf D wi+ pA

weR™ AER
subject to A> U —w;, Vi
A>0, w>0.

Theorem 6.7. : If Z C R™ is an affine projection of Z1 C R™ namely that Z := {z €
R™ |32 € Z1, 2z = A2 + ap} for some A € R™"™ and ag € R™, then §*(v|Z) = afv +
5*(ATU‘21).

Theorem 6.9. : If g(x,2) is a positive affine mapping of ¢'(x,z), namely that g(x,z) :=
ag'(x,z) + B for some a > 0, then g«(x,v) = ag,(z,v/a) — 5.



Other useful theorems

Corollary 6.8. : Consider using the budgeted uncertainty set Z .= {z e R™| —1 <

' (v|Z) = inf Zw;r + Zw; + pA

wteR™ w—ecR™ AR

subject to A > v —w;, Vi
A2 —v;—w; , Vi
w>0, A>0.

Hence, the robust counterpart takes the form:

( Ziwj+2iwi_+0)\_g*(5’3av) <40
A> v —w, Vi
)\Z—vi—w;,Vi

wr >0, w >0, A>0

Jut eR™" w eR™" ) NeRveR™ (¢

\



Table 6.1: Table of reformulations for uncertainty sets (Table 1 in [8])

Uncertainty region Z

Support function §*(v|Z)

Box
Ball
Polyhedral

Cone

KL-Divergence

Geometric prog.

Intersection
Example

Minkowski sum
Example

Convex hull

Example

[2][oc < p
[2][2 < p
b— Bz>0

b— Bzec(C
s an(3) <
> el < p

Zp = {z|llzlk < px}
k=12

Zy =1{2||2|lc £ poo}
Zy ={z||zll2 < p2}

Z =conv(Zy,...,2K)

21 = 17| |#[lec < pooy
2y ={z|]z = 2|2 < p2}

pllvlls
pllvli2
inwaO:BTw:v ' w

inwaC’*:BTw:v bTw

inf, o Y, 2Puel/W=1 4 py

Wq

nfu>0,0>0:5, diwi=v 25 1Wwi In (au) —wi} + pu
inf (350 wimo 23 0 (W] Z5)

N (1 12)01 420 P1]| 0" oo + p2]|w?]|2

> 0" (v Z)

pool|vllt + p2|lv][2

max; 6*(v|Z;)

max{peo||vll1, (z")" v + p2|v]]]2}




Table 6.2: Table of reformulations for constraint functions (Table 2 in [8])

Constraint function g(z, 2) Partial concave conjugate g.(x,v)
U B Qe et 4
ge(;)ziz\lf)elei?nz,; and x 9(z)" @ SUP{siyr_ 307, si=v i i(9i)«(8" /i)

Sum of functions

Sum of separable
functions

Example

Zi gi(xa Z)

Zz‘ gi(gjv ZZ)
o Z:il x:izia

r, >1,0<2<1

SUP{giyn .5 simy Zz(gz)*(ﬂ% Si)
2?21(%)*(557 UZ')
{ Y (s ) e <o

—00 otherwise

Exponential inz —g(x)e® with g(x) > 0,V {

vin(—v/g(z)) —v ifv <0
—00 otherwise



Planning an ad campaign
with exposure rate uncertainty

Figure of the converted number of customers per ad
displayed on a website according to h;(x;) := 30(1 + z;/1000)% — 30
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Planning an ad campaign
with exposure rate uncertainty

* Derive a tractable reformulation for the robust counterpart

of this problem:
maximize Z hi(x)

X

subject to Zpixi < B

x>0,
with

hz(.’l?@) = Ci(l—I—ZBi/di)ai—Ci
Uy :={a€R"[IFzeR"0<2<1, ) z <TI, a; =a;(l-025z), i}

where a € [0, 1|"



Exerclse

Exercise 6.3. (More robust non-linear reformulations)

Consider the robust optimization problem:

maximize  min z; exp(z;)
T 2€Z “~—

subject to sz <1
x>0,
where

Z={zeR"|we[-L1|",we|-11],z=pu+ Qv+ w),|v|1 <T}.

Question: Derive a tractable reformulation of this problem as a convex optimization
problem of finite dimension 7



