Chapter 3:

Data-driven Uncertainty Set Design

Chance constraints

- Charnes and Cooper introduced in 1959, a concept now referred as chance constraint. Namely, given a distribution F for a random vector Z and a tolerance $\epsilon>0$.
One can impose that

$$
\mathbb{P}\left(a(Z)^{T} x \leq b(Z)\right) \geq 1-\epsilon
$$

- This also gives rise to the notion of Value at Risk for a return
$\operatorname{VaR}_{1-\epsilon}\left(c(Z)^{T} x+d(Z)\right):=-\sup \left\{y \in \mathbb{R} \mid \mathbb{P}\left(c(Z)^{T} x+d(Z) \geq y\right) \geq 1-\epsilon\right\}$
- Both involve verifying whether a constraint is satisfied with high probability
- E.g. minimizing the value at risk of a portfolio of stocks

$$
\min _{x: x \geq 0, \sum_{i} x_{i}=1} \operatorname{VaR}_{1-\epsilon}\left(r^{T} x\right)
$$

SOCP reformulation for normal distribution

- The three following constraints are equivalent when the random return vector «r » is normally distributed $N(\mu, \Sigma)$
(1) $\mathbb{P}\left(r^{T} x \geq y\right) \geq 1-\epsilon$
(2) $\mu^{T} x-\Phi^{-1}(1-\epsilon) \sqrt{x^{T} \Sigma x} \geq y$
(3) $r^{T} x \geq y, \forall r:\left\|\Sigma^{-1 / 2}(r-\mu)\right\| \leq \Phi^{-1}(1-\epsilon)$
- For general distribution, verifying whether the chance constraint is satisfied for a fixed « x » is NP-hard.

Robust optimization as an approximation to chance constraints

Theorem 3.2.: Given some $\epsilon>0$ and some random vector Z distributed according to F, let \mathcal{Z} be a set such that

$$
\mathbb{P}(Z \in \mathcal{Z}) \geq 1-\epsilon
$$

then one has the guarantee that any x satisfying the robust constraint

$$
a(z)^{T} x \leq b(z), \forall z \in \mathcal{Z}
$$

will also satisfy the following chance constraint

$$
\mathbb{P}\left(a(Z)^{T} x \leq b(Z)\right) \geq 1-\epsilon
$$

Note that the converse is not true so that the two constraints are generally not equivalent.

Robust optimization as an approximation to chance constraints

Theorem 3.2.: Given some $\epsilon>0$ and some random vector Z distributed according to F, let \mathcal{Z} be a set such that

$$
\mathbb{P}(Z \in \mathcal{Z}) \geq 1-\epsilon
$$

then one has the guarantee that any x satisfying the robust constraint
In particular, in the example:

$$
\mathbb{P}\left(r^{T} x \geq y\right) \geq 1-\epsilon
$$

if \boldsymbol{r} is normally distributed and an ellipsoidal set is used one would get the following uncertainty set

$$
r^{T} x \geq y, \forall r:\left\|\Sigma^{-1 / 2}(r-\mu)\right\| \leq \sqrt{F_{\chi_{m}^{2}}^{-1}(1-\epsilon)} \neq \Phi^{-1}(1-\epsilon)
$$

How RO approximates chance constraints

$$
\begin{aligned}
& \text { Let } m=2, \epsilon=5 \%, \text { and } \Sigma=I, r_{2} \\
& \Phi^{-1}(1-\epsilon)=1.645, \sqrt{F_{\chi_{2}^{2}}^{-1}(1-\epsilon)}=2.445 \\
& \text { Let } \\
& \mathcal{U}(\gamma):=\left\{r \mid\left\|\Sigma^{-1 / 2}(r-\mu)\right\|_{2} \leq \gamma\right\}
\end{aligned}
$$

Since $P(r \in \mathcal{U}(2.445))=95 \%$.

$$
r^{T} x \geq y, \forall r \in \mathcal{U}(2.445)
$$

$$
\Downarrow
$$

$$
P\left(r^{T} x \geq y\right) \geq 95 \%
$$

Actually, $P\left(r^{T} x \geq y\right) \geq 99 \%$

$$
r_{n}^{\star}(x)=\arg \min _{r \in \mathcal{U}(2.445)} r^{T} x^{r_{1}}
$$

How RO approximates chance constraints

How RO approximates chance constraints

How RO approximates chance constraints

How RO approximates chance constraints

$$
\begin{aligned}
& \text { Let } m=2, \epsilon=5 \%, \text { and } \Sigma=I, r_{2} \\
& \Phi^{-1}(1-\epsilon)=1.645, \sqrt{F_{\chi_{2}^{2}}^{-1}(1-\epsilon)}=2.445 \\
& \text { Let } \\
& \mathcal{U}(\gamma):=\left\{r \mid\left\|\Sigma^{-1 / 2}(r-\mu)\right\|_{2} \leq \gamma\right\}
\end{aligned}
$$

$$
r^{T} x \geq y, \forall r \in \mathcal{U}(1.645)
$$

$$
r^{T} x \geq y, \forall r \in \mathcal{U}^{\prime}(1.645)
$$

$$
\mathcal{U}^{\prime}(\gamma):=\left\{r \mid r^{T} x \geq \min _{r \in \mathcal{U}(\gamma)} r^{T} x\right\}
$$

$$
\frac{\downarrow}{P\left(r^{T} x \geq y\right) \geq 95 \%}
$$

आค円

Corollary 3.3. : Given some $\epsilon>0$ and some random vector Z distributed according to F, let \mathcal{Z} be a set such that

$$
\mathbb{P}(Z \in \mathcal{Z}) \geq 1-\epsilon
$$

then the LP-RC optimization problem (2.1) is a conservative approximation of the stochastic program

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & V a R_{1-\epsilon}\left(Z^{T} P_{0}^{T} x+q_{0}^{T} Z+p_{0}^{T} x+r_{0}\right) \\
\text { subject to } & \mathbb{P}\left(Z^{T} P_{j}^{T} x+p_{j}^{T} x \leq q_{j}^{T} Z+r_{j}\right) \geq 1-\epsilon, \forall j=1, \ldots, J,
\end{aligned}
$$

where $\operatorname{Va}_{1-\epsilon}(\cdot)$ is as defined in definition 3.1. Specifically, by conservative approximation we mean that an optimal solution to the LP-RC problem will be feasible according to the above stochastic program where it will achieve an objective value that is lower than what was established by the LP-RC optimization model.

Example: Portfolio with minimum VaR

You are given a set of historical monthly returns of 10 stocks for year 2000-2009, and are asked to approximate the following "value-at-risk" problem:

$$
\begin{array}{cl}
\underset{x, y}{\operatorname{minimize}} & -y \\
\text { subject to } & \mathbb{P}\left(r^{T} x \geq y\right) \geq 1-\epsilon \quad \sum_{i=1}^{n} x_{i}=1 \quad x \geq 0,
\end{array}
$$

where $\epsilon=5 \%$ and the distribution of r is considered as the empirical distribution of the monthly stock returns over the whole period of 2000-2009, in other words, any monthly return vector observed in this period is as likely to occur.
Our answer: Let's consider the following approximation to the value-at-risk problem described above:

$$
\begin{array}{cl}
\underset{x, y}{\operatorname{minimize}} & -y \\
\text { subject to } & r^{T} x \geq y, \forall r \in \mathcal{U} \quad \sum_{i=1}^{n} x_{i}=1 \quad x \geq 0
\end{array}
$$

where we will use the uncertainty set:

$$
\mathcal{U}\left(r_{0}, \gamma\right):=\left\{r \in \mathbb{R}^{10} \mid\left\|r-r_{0}\right\|_{2} \leq \gamma\right\}
$$

How would you calibrate « r_{0} » and γ ?

Example: Portfolio with minimum VaR (Google Colab)

- We center the set at the mean
- We choose a radius such that the ball includes 95\% of the samples
[] r0=np.mean(Rs,axis=1)

- In this example, the radius ends up being 0,75 while with a normal distribution we would use 0,24

Example: Portfolio with minimum VaR (Google Colab)

- The robust solution offers a bound on 95\%VaR of 21%
- In-sample, the VaR is 6.3\%
- Out-of-sample, the VaR is 6.6%
[] $\mathrm{n}=$ Rs.shape[0]
\#Create model
model = ro.Model('RobustPorfolioVaR')
\# Define variables
$\mathrm{x}=$ model.dvar(n)
$\mathrm{y}=$ model.dvar(1)
\# Define uncertain parameters
$r=m o d e l . r v a r(n)$

UncertaintySet=(rso. norm(r-r0, 2$)<=$ gamma)

```
model.min(-y)
model.st((r@x>=y).forall(UncertaintySet))
model.st(sum(x)==1)
model.st(x<=1)
model.st(x>=0)
model.solve(my_solver)
```


Risk-return tradeoff approximation

- In practice a decision maker is interested in the possible tradeoffs between risk and return
- In portfolio selection problem, this can be done with stochastic prog. or robust optimization

Stochastic Prog.
maximize $\quad \mathbb{E}\left[r^{T} x\right]$
subject to $\quad \mathbb{P}\left(r^{T} x \geq 0\right) \geq 1-\epsilon$
$\sum_{i=1}^{n} x_{i}=1$
$x \geq 0$.

Robust optimization maximize $\mu^{T} x$
subject to $\quad r^{T} x \geq 0, \forall r \in \mathcal{U}(\Gamma)$
$\sum_{i=1}^{n} x_{i}=1$
$x \geq 0$,

Risk-return tradeoff

approximation

- In Bertsimas et al. 2011, the authors show that while RO only requires a fraction of computations needed by SP, it identifies solutions that are nearly optimal w.r.t. SP efficient frontier

RO as approximation to ambiguous chance constraints

Assumption 3.4. : Let $Z \in \mathbb{R}^{m}$ be a random vector for which the distribution is not known, yet what is known of the random vector is that all Z_{i} 's are independent from each other and that each of them is symmetrically distributed on the interval $[-1,1]$.

Theorem 3.5. : Given some $\epsilon>0$ and some random vector Z that satisfies assumption 3.4, one has the guarantee that any x satisfying the robust constraint

$$
a(z)^{T} x \leq b(z), \forall z \in \mathcal{Z}_{\text {ell }}(\gamma)
$$

where

$$
\mathcal{Z}_{\text {ell }}(\gamma):=\left\{z \in \mathbb{R}^{m} \mid\|z\|_{2} \leq \gamma\right\}
$$

and $\gamma:=\sqrt{2 \ln (1 / \epsilon)}$ is guaranteed to satisfy the following chance constraint

$$
\mathbb{P}\left(a(Z)^{T} x \leq b(Z)\right) \geq 1-\epsilon
$$

even though the distribution of Z is not known.

A corollary result for the budgeted uncertainty set

Corollary 3.8. : Given some $\epsilon>0$ and some random vector Z that satisfies assumption 3.4, one has the guarantee that any x satisfying the robust constraint

$$
a(z)^{T} x \leq b(z), \forall z \in \mathcal{Z}_{\text {budg }}(\Gamma),
$$

where

$$
\mathcal{Z}_{\text {budg }}(\Gamma):=\left\{z \in \mathbb{R}^{m} \mid z_{i} \in[-1,1],\|z\|_{1} \leq \Gamma\right\}
$$

and $\Gamma:=\sqrt{2 m \ln (1 / \epsilon)}$ is guaranteed to satisfy the following chance constraint

$$
\mathbb{P}\left(a(Z)^{T} x \leq b(Z)\right) \geq 1-\epsilon
$$

even though the distribution of Z is not known.

Definition of Coherent Risk Measures

In [2], Artzner et al. introduce for the first time the notion of a family of risk measures that are rational to employ. He indicates that such measures ρ should satisfy the following properties when defined in terms of an uncertain income:

- Translation invariance : the risk of a position to which we add a guaranteed income is reduced by the amount of the income, i.e. $\rho(Y+c)=\rho(Y)-c$ when c is certain
- Subadditivity: the risk of the sum of risky positions should be lower than the sum of the risks, i.e. $\rho(X+Y) \leq \rho(X)+\rho(Y)$
- Positive homogeneity : if the consequences of a risky position are scaled by the same positive amount $\lambda \geq 0$, then the risk should be scaled by the same amount, i.e. $\rho(\lambda Y)=$ $\lambda \rho(Y)$
- Monotonicity: A risky position that is guaranteed to return larger income than another risky position should be considered less risky, i.e. $X \geq Y \Rightarrow \rho(X) \leq \rho(Y)$.
- Relevance : if a risky position has the potential of leading to a loss, then the risk should be strictly positive, i.e. $X \leq 0 \& X \neq 0 \Rightarrow \rho(X)>0$.

Based on these five axioms, the authors are able to demonstrate that the risk measure must be representable in the following form:

$$
\rho(Y):=\sup _{F \in \mathcal{D}} \mathbb{E}_{F}[-Y]
$$

RO as imposing a bound on a coherent risk measure

Theorem 3.9. : Given a coherent risk measure $\rho(\cdot)$, there always exists a convex uncertainty set \mathcal{Z} such that the no risk constraint

$$
\rho\left(b(Z)-a(Z)^{T} x\right) \leq 0
$$

is equivalent to imposing the robust constraint

$$
a(z)^{T} x \leq b(z), \forall z \in \mathcal{Z}
$$

The converse is also true.

The Case of Conditional Value-at-Risk

Mathematically, the most popular representation for the CVaR measure appeared in [34] and takes the following form when the random variable Y represents an uncertain revenue

$$
\operatorname{CVaR}_{1-\epsilon}(Y):=\inf _{t} t+\frac{1}{\epsilon} \mathbb{E}[\max (0,-Y-t)] .
$$

Intuitively, it is worth knowing that at optimum the value t^{*} will captures the value at risk for the given uncertain revenue so that

The Case of Conditional Value-at-Risk

Use Theorem 3.9 to show that when the distribution of z is

$$
\mathbb{P}\left(Z=\bar{z}_{i}\right)=p_{i}, \forall i=1, \ldots, K
$$

the bounded CVaR constraint

$$
C V a R_{1-\epsilon}\left(b(Z)-a(Z)^{T} x\right) \leq 0
$$

can be equivalently reformulated as the following robust constraint

$$
a(z)^{T} x \leq b(z), \forall z \in \mathcal{Z}_{\mathrm{CVaR}}(\epsilon)
$$

where
$\mathcal{Z}_{\mathrm{CVaR}}(\epsilon)=\left\{z \in \mathbb{R}^{m} \mid \exists q \in \mathbb{R}^{K}, q \geq 0, q_{i} \leq p_{i} / \epsilon, \sum_{i=1}^{K} q_{i}=1, z=\sum_{i=1}^{K} \bar{z}_{i} q_{i}\right\}$

