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Chapter 3

Data-driven Uncertainty Set Design

The fact that the robust optimization perspective requires one to characterize uncertainty
through the use of uncertainty sets is both a strength and a limitation of the method. On the
positive side, the idea of an uncertainty set is somewhat easier to visualize than the notion
of a distribution. As we indicated in the last chapter, it is also often easier to involve in an
optimization process because of the property that there exists simply structured certificates
that allows us to verify feasibility1. On the flip side, potentially because the field is relatively
young, the main issue that is often faced by practitioners is the question how to create an
uncertainty set that captures accurately the knowledge and risks that are present.

Up to this date, the most documented methods of constructing uncertainty sets are mo-
tivated by the idea of an underlying distribution for the uncertain vector Z, and robustness
can be perceived in terms of protecting the decision maker from scenarios that are drawn
from such a distribution. In what follows, we explain an important connection that needs to
be made with chance constraints and to the concept of coherent risk measures.

3.1 Chance Constraint Approximation

In 1959, Charnes and Cooper in [16] introduced a concept that became very famous in the field
of stochastic programming. Their idea was that when a constraint is a↵ected by uncertainty,
one should try to impose that the constraint be satisfied with high probability. Namely, a
constraint of the type:

a(z)T
x  b(z)

should become the following “chance constraint”

P(a(Z)T
x  b(Z)) � 1 � ✏

with ✏ > 0 characterizing the amount of probability with which we are comfortable that the
constraint might not be respected. The smaller ✏ is the more protection one obtains in term
of ensuring that the constraint be met.

Another related concept that was introduced by financial institutions and is now a uni-
versal standard as made o�cial in the Basel II Accord is the Value at Risk (VaR). Indeed, it

1In contrast, verifying the feasibility or the objective value of a function that involves a continuous distri-
bution requires one to perform integration on high dimensional space.
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with ✏ > 0 characterizing the amount of probability with which we are comfortable
that the constraint might not be respected. The smaller ✏ is the more protection one
obtains in term of ensuring that the constraint be met.

Another related concept that was introduced by financial institutions and is now a
universal standard as made o�cial in the Basel II Accord is the Value at Risk (VaR).
Indeed, it is said that the value at risk of an uncertain expense is an amount for which
we are assured with high probability that the expense will not reach. Alternatively,
for an uncertain revenue, the VaR expresses (the negative of) an amount that we have
high confidence the true revenue will surpass.

Definition 3.1. : Mathematically, for a revenue calculated as c(z)Tx+ d(z), it can be
defined as

VaR1�✏(c(Z)
T
x+ d(Z)) := � sup{y 2 R | P(c(Z)Tx+ d(Z) � y) � 1 � ✏}

Hence, when maximizing an uncertain revenue one can formulate a VaR minimization
problem as follows:

minimize
x,y

�y

subject to P(c(Z)Tx+ d(Z) � y) � 1 � ✏

x 2 X .

One should note here that, given a candidate solution x, both the chance constraint
and the value at risk formulation involve verifying whether a constraint is satisfied with
high probability or not. Unfortunately, it is generally intractable to do so, unless the
distribution has a very simple form (see section 3.1.2).

It is not surprising that the community has often interpreted robust constraints in
terms of chance constraints. Indeed, the fact that a solution is said to be “robust” is
understood by many as a statement about how likely it is to perform well. In fact, some
might argue that a robust constraint should be interpreted as P(a(Z)Tx  b(Z)) =
100%. Yet, for many distributions assumptions, this statement is useless. Take for
instance, the case where we would want P(ZT

x  1) = 100% under the hypothesis
that the terms of Z be normally distributed. In this case, the constraint would plainly
require that x = 0 since otherwise there is always some chance that the constraint
would be violated. One must therefore be a bit more realistic and one option is to
consider imposing that P(a(Z)Tx  b(Z)) � 1 � ✏ for some ✏ > 0.

The most straightforward way of approximating a chance constraint with a robust
constraint is to calibrate the uncertainty set such that it is large enough to cover a set
of realizations for Z that has more than 1�✏ chances of containing the true realization.
In other words, one might employ robust optimization as suggested by the following
theorem.

Theorem 3.2. : Given some ✏ > 0 and some random vector Z distributed according
to F , let Z be a set such that

P(Z 2 Z) � 1 � ✏ ,

min
x:x�0,

P
i xi=1

VaR1�✏(r
Tx)



SOCP reformulation for 
normal distribution

• The three following constraints are equivalent when the 
random return vector « r » is normally distributed 
 
(1) 
 
(2) 
 
(3) 

• For general distribution, verifying whether the chance 
constraint is satisfied for a fixed « x » is NP-hard. 
 

N(µ,⌃)

µTx� ��1(1� ✏)
p
xT⌃x � y
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Our answer: Let’s consider the following approximation to the value-at-risk problem de-
scribed above:

minimize
x,y

�y (3.1a)

subject to r
T
x � y , 8 r 2 U (3.1b)

where we will use the uncertainty set:

U(r0, �) := {r 2 R10 | kr � r0k2  �} ,

which would need to be parametrized such that P(r 2 U(r0, �)) � 1�✏. We choose to employ
the most natural version of r0, namely r0 = E [r], which centers the uncertainty set at the
expected return values. We are left with calibrating �. This can be done by following the
procedure:

1. For each monthly return rk in the historical data:

(a) Compute �k := krk � r0k2 which indicates how large � needed to be for rk 2
U(r0, �).

2. Choose as � the (1 � ✏) ⇥ K-th largest � in the list {�k}K
k=1 where K is the number of

months in the study.

Our implementation in Matlab (see “ExampleParameterCalibration.m”) returns a policy
which achieved a 5% value at risk guaranteed below 0.086 (i.e. above a loss of 8.6%), the
robust policy actually achieved an in-sample VaR of 0.068 (i.e. with 95% chances of loosing
less than 6.8%) for the historical data 2000-2009, and an out-of-sample VaR of 0.073 (i.e.
loose less than 7.3%) in the years 2010-2014.

3.1.2 Example: Return vector uncertainty under normal distribution

Let’s have a look at the reformulation for the robust counterpart presented in example 3.1.1.
As presented in section 2.2.1, the tractable reformulation takes the shape:

minimize
x,y

�y

subject to r
T
0 x � �kxk2 � y

It is interesting to be aware of the following connection there is to make with the chance
constrained problem that would be obtained if r was assumed to be normally distributed.
Note that if r is normally distributed with mean r0 and covariance matrix �I, then it is well
known that r

T
x is also normally distributed with mean r

T
0 x and variance �

2kxk2
2. Hence the

constraint that states
P(rT

x � y) � 1 � ✏

is equivalent to requiring that

r
T
0 � ��1(1 � ✏)�kxk2 � y ,rTx � y , 8 r : k⌃�1/2(r � µ)k  ��1(1� ✏)
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then one has the guarantee that any x satisfying the robust constraint

a(z)Tx  b(z) , 8 z 2 Z ,

will also satisfy the following chance constraint

P(a(Z)Tx  b(Z)) � 1 � ✏ .

Proof. Let x satisfy the robust constraint

a(z)Tx  b(z) , 8 z 2 Z ,

then the probability

P(a(Z)Tx  b(Z)) � P(Z 2 Z) � 1 � ✏ .

⇤
Note that the theorem does not present an “if and only if” statement, which means

that replacing a chance constraint by a robust constraint has the potential of (and has
often the e↵ect of) reducing the feasible region. We are left with the following guideline
for constructing the uncertainty set involved in a robust optimization model.

Corollary 3.3. : Given some ✏ > 0 and some random vector Z distributed according
to F , let Z be a set such that

P(Z 2 Z) � 1 � ✏ ,

then the LP-RC optimization problem (2.1) is a conservative approximation of the
stochastic program

minimize
x

VaR✏(Z
T
P

T
0 x+ q

T
0 Z + p

T
0 x+ r0)

subject to P (ZT
P

T
j x+ p

T
j x  q

T
j Z + rj) � 1 � ✏ , 8 j = 1, ..., J ,

where VaR✏(·) is as defined in definition 3.1. In other words, an optimal solution to
the LP-RC problem will be feasible according to the above stochastic program where it
will achieve an objective value that is lower than what was established by the LP-RC
optimization model.

We present a few examples to illustrate how this result might be employed.

3.1.1 Example: Data-driven return vector uncertainty

You are given a set of historical monthly returns of 10 stocks for year 2000 - 2009, and
are asked to approximate the following “value-at-risk” problem:

minimize
x,y

�y

subject to P(rT
x � y) � 1 � ✏

where ✏ = 5% and the distribution of r is considered as the empirical distribution of
the monthly stock returns over the whole period of 2000-2009, in other words, any
monthly return vector observed in this period is as likely to occur.

46 CHAPTER 3. DATA-DRIVEN UNCERTAINTY SET DESIGN

with ✏ > 0 characterizing the amount of probability with which we are comfortable
that the constraint might not be respected. The smaller ✏ is the more protection one
obtains in term of ensuring that the constraint be met.

Another related concept that was introduced by financial institutions and is now a
universal standard as made o�cial in the Basel II Accord is the Value at Risk (VaR).
Indeed, it is said that the value at risk of an uncertain expense is an amount for which
we are assured with high probability that the expense will not reach. Alternatively,
for an uncertain revenue, the VaR expresses (the negative of) an amount that we have
high confidence the true revenue will surpass.

Definition 3.1. : Mathematically, for a revenue calculated as c(z)Tx+ d(z), it can be
defined as

VaR✏(c(Z)
T
x+ d(Z)) := � sup{y 2 R | P(c(Z)Tx+ d(Z) � y) � 1 � ✏}

Hence, when maximizing an uncertain revenue one can formulate a VaR minimization
problem as follows:

minimize
x,y

�y

subject to P(c(Z)Tx+ d(Z) � y) � 1 � ✏

x 2 X .

One should note here that, given a candidate solution x, both the chance constraint
and the value at risk formulation involve verifying whether a constraint is satisfied with
high probability or not. Unfortunately, it is generally intractable to do so, unless the
distribution as a very simple form (see section 3.1.2).

It is not surprising that the community has often interpreted robust constraints in
terms of chance constraints. Indeed, the fact that a solution is said to be “robust” is
understood by many as a statement about how likely it is to perform well. In fact, some
might argue that a robust constraint should be interpreted as P(a(Z)Tx  b(Z)) =
100%. Yet, for many distributions assumptions, this statement is useless. Take for
instance, the case where we would want P(ZT

x  1) = 100% under the hypothesis
that the terms of Z be normally distributed. In this case, the constraint would plainly
require that x = 0 since otherwise there is always some chance that the constraint
would be violated. One must therefore be a bit more realistic and one option is to
consider imposing that P(a(Z)Tx  b(Z)) � 1 � ✏ for some ✏ > 0.

The most straightforward way of approximating a chance constraint with a robust
constraint is to calibrate the uncertainty set such that it is large enough to cover a set
of realizations for Z that has more than 1�✏ chances of containing the true realization.
In other words, one might employ robust optimization as suggested by the following
theorem.

Theorem 3.2. : Given some ✏ > 0 and some random vector Z distributed according
to F , let Z be a set such that

P(Z 2 Z) � 1 � ✏ ,
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then one has the guarantee that any x satisfying the robust constraint

a(z)Tx  b(z) , 8 z 2 Z ,

will also satisfy the following chance constraint

P(a(Z)Tx  b(Z)) � 1 � ✏ .

Proof. Let x satisfy the robust constraint

a(z)Tx  b(z) , 8 z 2 Z ,

then the probability

P(a(Z)Tx  b(Z)) � P(Z 2 Z) � 1 � ✏ .

⇤
Note that the theorem does not present an “if and only if” statement, which means

that replacing a chance constraint by a robust constraint has the potential of (and has
often the e↵ect of) reducing the feasible region. We are left with the following guideline
for constructing the uncertainty set involved in a robust optimization model.

Corollary 3.3. : Given some ✏ > 0 and some random vector Z distributed according
to F , let Z be a set such that

P(Z 2 Z) � 1 � ✏ ,

then the LP-RC optimization problem (2.1) is a conservative approximation of the
stochastic program

minimize
x

VaR✏(Z
T
P

T
0 x+ q

T
0 Z + p

T
0 x+ r0)

subject to P (ZT
P

T
j x+ p

T
j x  q

T
j Z + rj) � 1 � ✏ , 8 j = 1, ..., J ,

where VaR✏(·) is as defined in definition 3.1. In other words, an optimal solution to
the LP-RC problem will be feasible according to the above stochastic program where it
will achieve an objective value that is lower than what was established by the LP-RC
optimization model.

We present a few examples to illustrate how this result might be employed.

3.1.1 Example: Data-driven return vector uncertainty

You are given a set of historical monthly returns of 10 stocks for year 2000 - 2009, and
are asked to approximate the following “value-at-risk” problem:

minimize
x,y

�y

subject to P(rT
x � y) � 1 � ✏

where ✏ = 5% and the distribution of r is considered as the empirical distribution of
the monthly stock returns over the whole period of 2000-2009, in other words, any
monthly return vector observed in this period is as likely to occur.
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with ✏ > 0 characterizing the amount of probability with which we are comfortable
that the constraint might not be respected. The smaller ✏ is the more protection one
obtains in term of ensuring that the constraint be met.

Another related concept that was introduced by financial institutions and is now a
universal standard as made o�cial in the Basel II Accord is the Value at Risk (VaR).
Indeed, it is said that the value at risk of an uncertain expense is an amount for which
we are assured with high probability that the expense will not reach. Alternatively,
for an uncertain revenue, the VaR expresses (the negative of) an amount that we have
high confidence the true revenue will surpass.

Definition 3.1. : Mathematically, for a revenue calculated as c(z)Tx+ d(z), it can be
defined as

VaR✏(c(Z)
T
x+ d(Z)) := � sup{y 2 R | P(c(Z)Tx+ d(Z) � y) � 1 � ✏}

Hence, when maximizing an uncertain revenue one can formulate a VaR minimization
problem as follows:

minimize
x,y

�y

subject to P(c(Z)Tx+ d(Z) � y) � 1 � ✏

x 2 X .

One should note here that, given a candidate solution x, both the chance constraint
and the value at risk formulation involve verifying whether a constraint is satisfied with
high probability or not. Unfortunately, it is generally intractable to do so, unless the
distribution as a very simple form (see section 3.1.2).

It is not surprising that the community has often interpreted robust constraints in
terms of chance constraints. Indeed, the fact that a solution is said to be “robust” is
understood by many as a statement about how likely it is to perform well. In fact, some
might argue that a robust constraint should be interpreted as P(a(Z)Tx  b(Z)) =
100%. Yet, for many distributions assumptions, this statement is useless. Take for
instance, the case where we would want P(ZT

x  1) = 100% under the hypothesis
that the terms of Z be normally distributed. In this case, the constraint would plainly
require that x = 0 since otherwise there is always some chance that the constraint
would be violated. One must therefore be a bit more realistic and one option is to
consider imposing that P(a(Z)Tx  b(Z)) � 1 � ✏ for some ✏ > 0.

The most straightforward way of approximating a chance constraint with a robust
constraint is to calibrate the uncertainty set such that it is large enough to cover a set
of realizations for Z that has more than 1�✏ chances of containing the true realization.
In other words, one might employ robust optimization as suggested by the following
theorem.

Theorem 3.2. : Given some ✏ > 0 and some random vector Z distributed according
to F , let Z be a set such that

P(Z 2 Z) � 1 � ✏ ,

In particular, in the example: 
 
 
if     is normally distributed and an ellipsoidal set is used one would 
get the following uncertainty set 
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Our answer: Let’s consider the following approximation to the value-at-risk problem de-
scribed above:

minimize
x,y

�y (3.1a)

subject to r
T
x � y , 8 r 2 U (3.1b)

where we will use the uncertainty set:

U(r0, �) := {r 2 R10 | kr � r0k2  �} ,

which would need to be parametrized such that P(r 2 U(r0, �)) � 1�✏. We choose to employ
the most natural version of r0, namely r0 = E [r], which centers the uncertainty set at the
expected return values. We are left with calibrating �. This can be done by following the
procedure:

1. For each monthly return rk in the historical data:

(a) Compute �k := krk � r0k2 which indicates how large � needed to be for rk 2
U(r0, �).

2. Choose as � the (1 � ✏) ⇥ K-th largest � in the list {�k}K
k=1 where K is the number of

months in the study.

Our implementation in Matlab (see “ExampleParameterCalibration.m”) returns a policy
which achieved a 5% value at risk guaranteed below 0.086 (i.e. above a loss of 8.6%), the
robust policy actually achieved an in-sample VaR of 0.068 (i.e. with 95% chances of loosing
less than 6.8%) for the historical data 2000-2009, and an out-of-sample VaR of 0.073 (i.e.
loose less than 7.3%) in the years 2010-2014.

3.1.2 Example: Return vector uncertainty under normal distribution

Let’s have a look at the reformulation for the robust counterpart presented in example 3.1.1.
As presented in section 2.2.1, the tractable reformulation takes the shape:

minimize
x,y

�y

subject to r
T
0 x � �kxk2 � y

It is interesting to be aware of the following connection there is to make with the chance
constrained problem that would be obtained if r was assumed to be normally distributed.
Note that if r is normally distributed with mean r0 and covariance matrix �I, then it is well
known that r

T
x is also normally distributed with mean r

T
0 x and variance �

2kxk2
2. Hence the

constraint that states
P(rT

x � y) � 1 � ✏

is equivalent to requiring that

r
T
0 � ��1(1 � ✏)�kxk2 � y ,

r
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then one has the guarantee that any x satisfying the robust constraint

a(z)Tx  b(z) , 8 z 2 Z ,

will also satisfy the following chance constraint

P(a(Z)Tx  b(Z)) � 1 � ✏ .

Proof. Let x satisfy the robust constraint

a(z)Tx  b(z) , 8 z 2 Z ,

then the probability

P(a(Z)Tx  b(Z)) � P(Z 2 Z) � 1 � ✏ .

⇤

Note that the theorem does not present an “if and only if” statement, which means
that replacing a chance constraint by a robust constraint has the potential of (and has
often the e↵ect of) reducing the feasible region. We are left with the following guideline
for constructing the uncertainty set involved in a robust optimization model.

Corollary 3.3. : Given some ✏ > 0 and some random vector Z distributed according
to F , let Z be a set such that

P(Z 2 Z) � 1 � ✏ ,

then the LP-RC optimization problem (2.1) is a conservative approximation of the
stochastic program

minimize
x

VaR1�✏(Z
T
P

T

0
x+ q

T

0
Z + p

T

0
x+ r0)

subject to P(ZT
P

T

j
x+ p

T

j
x  q

T

j
Z + rj) � 1 � ✏ , 8 j = 1, ..., J ,

where VaR1�✏(·) is as defined in definition 3.1. Specifically, by conservative approxima-
tion we mean that an optimal solution to the LP-RC problem will be feasible according
to the above stochastic program where it will achieve an objective value that is lower
than what was established by the LP-RC optimization model.

We present a few examples to illustrate how this result might be employed.
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Proof. Let x satisfy the robust constraint

a(z)T
x  b(z) , 8 z 2 Z ,

then the probability
P(a(Z)T

x  b(Z)) � P(Z 2 Z) � 1 � ✏ .

⇤

Note that the theorem does not present an “if and only if” statement, which means that
replacing a chance constraint by a robust constraint has the potential of (and has often the
e↵ect of) reducing the feasible region. We are left with the following guideline for constructing
the uncertainty set involved in a robust optimization model.

Corollary 3.3. : Given some ✏ > 0 and some random vector Z distributed according to F ,
let Z be a set such that

P(Z 2 Z) � 1 � ✏ ,

then the LP-RC optimization problem (2.1) is a conservative approximation of the stochastic
program

minimize
x

VaR✏(Z
T
P

T
0 x + q

T
0 Z + p

T
0 x + r0)

subject to P (ZT
P

T
j x + p

T
j x  q

T
j Z + rj) � 1 � ✏ , 8 j = 1, ..., J ,

where VaR✏(·) is as defined in definition 3.1. In other words, an optimal solution to the LP-
RC problem will be feasible according to the above stochastic program where it will achieve an
objective value that is higher than what was established by the LP-RC optimization model.

We present a few examples to illustrate how this result might be employed.

3.1.1 Example: Data-driven return vector uncertainty

You are given a set of historical monthly returns of 10 stocks for year 2000 - 2009, and are
asked to approximate the following “value-at-risk” problem:

minimize
x,y

�y

subject to P(rT
x � y) � 1 � ✏

where ✏ = 5% and the distribution of r is considered as the empirical distribution of the
monthly stock returns over the whole period of 2000-2009, in other words, any monthly
return vector observed in this period is as likely to occur.

Question: Identify a robust optimization problem that can approximate this optimization
model.
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Our answer: Let’s consider the following approximation to the value-at-risk problem de-
scribed above:

minimize
x,y

�y (3.1a)

subject to r
T
x � y , 8 r 2 U (3.1b)

where we will use the uncertainty set:

U(r0, �) := {r 2 R10 | kr � r0k2  �} ,

which would need to be parametrized such that P(r 2 U(r0, �)) � 1�✏. We choose to employ
the most natural version of r0, namely r0 = E [r], which centers the uncertainty set at the
expected return values. We are left with calibrating �. This can be done by following the
procedure:

1. For each monthly return rk in the historical data:

(a) Compute �k := krk � r0k2 which indicates how large � needed to be for rk 2
U(r0, �).

2. Choose as � the (1 � ✏) ⇥ K-th largest � in the list {�k}K
k=1 where K is the number of

months in the study.

Our implementation in Matlab (see “ExampleParameterCalibration.m”) returns a policy
which achieved a 5% value at risk guaranteed below 0.086 (i.e. above a loss of 8.6%), the
robust policy actually achieved an in-sample VaR of 0.068 (i.e. with 95% chances of loosing
less than 6.8%) for the historical data 2000-2009, and an out-of-sample VaR of 0.073 (i.e.
loose less than 7.3%) in the years 2010-2014.

3.1.2 Example: Return vector uncertainty under normal distribution

Let’s have a look at the reformulation for the robust counterpart presented in example 3.1.1.
As presented in section 2.2.1, the tractable reformulation takes the shape:

minimize
x,y

�y

subject to r
T
0 x � �kxk2 � y

It is interesting to be aware of the following connection there is to make with the chance
constrained problem that would be obtained if r was assumed to be normally distributed.
Note that if r is normally distributed with mean r0 and covariance matrix �I, then it is well
known that r

T
x is also normally distributed with mean r

T
0 x and variance �

2kxk2
2. Hence the

constraint that states
P(rT

x � y) � 1 � ✏

is equivalent to requiring that

r
T
0 � ��1(1 � ✏)�kxk2 � y ,
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3.1.1 Example: Data-driven return vector uncertainty

You are given a set of historical monthly returns of 10 stocks for year 2000 - 2009, and
are asked to approximate the following “value-at-risk” problem:

minimize
x,y

�y

subject to P(rT
x � y) � 1 � ✏

nX

i=1

xi = 1

x � 0 ,

where ✏ = 5% and the distribution of r is considered as the empirical distribution of
the monthly stock returns over the whole period of 2000-2009, in other words, any
monthly return vector observed in this period is as likely to occur.

Question: Identify a robust optimization problem that can approximate this opti-
mization model.

Our answer: Let’s consider the following approximation to the value-at-risk problem
described above:

minimize
x,y

�y (3.1a)

subject to r
T
x � y , 8 r 2 U (3.1b)

nX

i=1

xi = 1 (3.1c)

x � 0 , (3.1d)

where we will use the uncertainty set:

U(r0, �) := {r 2 R10
| kr � r0k2  �} ,

which would need to be parametrized such that P(r 2 U(r0, �)) � 1� ✏. We choose to
employ the most natural version of r0, namely r0 = E [r], which centers the uncertainty
set at the expected return values. We are left with calibrating �. This can be done by
following the procedure:

1. For each monthly return rk in the historical data:

(a) Compute �k := krk � r0k2 which indicates how large � needed to be for
rk 2 U(r0, �).

2. Choose as � the (1�✏)⇥K-th largest � in the list {�k}
K

k=1
where K is the number

of months in the study.
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• We center the set at the 
mean 

• We choose a radius such 
that the ball includes 95% 
of the samples

• In this example, the radius ends up being 0,75 while 
with a normal distribution we would use 0,24 

95%

0.75

https://colab.research.google.com/drive/1A-CUlLTE1VUoXj9-uO8nBAJYMUHPnIbc?usp=sharing


• The robust 
solution offers a 
bound on 95%-
VaR of 21% 

• In-sample, the 
VaR is 6.3% 

• Out-of-sample, 
the VaR is 6.6%

Example: Portfolio with 
minimum VaR (Google Colab)

https://colab.research.google.com/drive/1A-CUlLTE1VUoXj9-uO8nBAJYMUHPnIbc?usp=sharing


Risk-return tradeoff 
approximation

• In practice a decision maker is interested in the 
possible tradeoffs between risk and return 

• In portfolio selection problem, this can be done 
with stochastic prog. or robust optimization 
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tion of this chance constraint would simply takes the form

maximize µ
T
x

subject to r
T
x � 0 , 8 r 2 U

nX

i=1

xi = 1

x � 0 ,

for some well calibrated set U . Whether the set U be an ellipsoidal set, a budgeted
uncertainty set, or even a CVaR uncertainty set, each have a way of controlling how
conservative (i.e. robust) the solution will be: �, �, or ↵ respectively.

The figure below (originally as Figure 1.1 in [12]) presents the Pareto frontier of
performance pairs, i.e. (expected return, probability of loss) achieved by the stochastic
programming model and its three robust approximations.

Mean return vs. Loss probability Pareto frontier
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Fig. 1.1 (Top) Expected return-loss probability frontier for RO-based formulations and exact sto-
chastic formulation; numbers are time (sec.) for solving each stochastic program. (Bottom)
Frontier for model with random perturbations bounded by 1% (left) and 2% (right).

conservative. In general, solving the stochastic formulation exactly is di�cult, which
is not surprising given its NP-hardness. Though a few of the instances at extreme
return levels are solved in only a few seconds, several of the instances require well over
an hour to solve, and the worst case requires over 2.1 hours to solve. The total time
to solve these 8 instances is about 5.2 hours; by contrast, solving the 600 RO-based
instances takes a bit under 10 minutes in total, or about one second per instance.

The bottom two panels of Figure 1.1 show results for the computed portfolios
under the same return model but with random perturbations. Specifically, we per-
turb each of the N ⇥ n return values by a random number uniformly distributed on
[.99, 1.01] in the bottom left figure and [.98, 1.02] in the bottom right figure. At the 1%
perturbation level, the gap in performance between the models is reduced, and there
are regions in which each of the models is best as well as worst. The model based on
R

D is least a�ected by the perturbation; its frontier is essentially unchanged. The
models based on R

Q and R
T are more significantly a�ected, perhaps with the e�ect

on R
T being a bit more pronounced. Finally, the stochastic formulation’s solutions

are the most sensitive of the bunch: though the SP solution is a winner in one of the
8 cases, it is worse o� than the others in several of the other cases, and the increase
in loss probability from the original model is as large as 5–6% for the SP solutions.

At the 2% level, the results are even more pronounced: here, the SP solutions
are always outperformed by one of the robust approaches, and the solutions based
on R

D are relatively una�ected by the noise. The other two robust approaches are

0

0.004 0.006 0.008 0.010 0.012
Expected monthly return

Robust ellipsoidal 
Robust budgeted 
Robust CVaR 
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s
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s
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Note that in comparison on average the solutions of RO methods were obtained in 1 second.

3.4 Uncertainty Set Design based on Risk Mea-

sures

In [2], Artzner et al. introduce for the first time the notion of a family of risk measures
that are rational to employ. He indicates that such measures ⇢ should satisfy the
following properties when defined in terms of an uncertain income:

• Translation invariance : the risk of a position to which we add a guaranteed
income is reduced by the amount of the income, i.e. ⇢(Y + c) = ⇢(Y )� c when c

is certain

(�)

Stochastic Prog. Robust optimization
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3.3 Risk-return Tradeo↵ Approximation

While, there are di↵erent ways of calibrating the parameters that express the size
of the uncertainty set in order to approximate a certain chance-constraint that the
decision maker has in mind, one should be aware that chance-constraints are themselves
parametrized with ✏ that is potentially ambiguous since it captures the probability of
failure that the decision maker (DM) is comfortable with. In fact, there are many
situations in which this probability is not a firm value. Instead, the DM might be
willing to accept a larger probability of failure as long as the performance is improved
by an amount that is substantial enough. In other words, there is ambiguity regarding
how much risk might be considered acceptable in order to achieve larger returns. In
order to provide support for such DM, perhaps the goal of an optimization model is to
present the DM with a set of solutions that each achieve di↵erent level of compromise
between the performance that is expected and the risks of sub-performance. Practically
speaking, this could imply the use of an optimization model that returns solution that
are more or less conservative depending on some control parameter.

Let’s take as example (again!) a portfolio selection problem. When investing in the
stock market, we might be interested in maximizing the return of our investment while
being worried that our investment leads to a loss. Yet, it might be unclear what type
of trade-o↵ we are willing to make between increased expected return and increased
probability of loss. A model that is based on what was proposed by Markowitz [?]
would propose solving the following optimization problem:

maximize E [rT
x]

subject to P(rT
x � 0) � 1 � ✏

nX

i=1

xi = 1

x � 0 .

Now, given that the investor is not committed to a maximum probability of losses and
is willing to be tempted by larger probabilities if the expected returns are significantly
increased, then it becomes relevant to present to him the “Pareto” frontier of alterna-
tives. In other words, we would identify a set of all portfolios that could be obtained
by this optimization model as ✏ is adjusted from 0 to 100%. This is what was done by
Bertsimas and Brown [13] while highlighting how robust optimization could be used to
obtain portfolios that are highly competitive at a much reduced computational cost.

Namely, following the guidelines established in section 3.1, the robust approxima-



Risk-return tradeoff 
approximation

• In Bertsimas et al. 2011, the authors show that while RO 
only requires a fraction of computations needed by SP, it 
identifies solutions that are nearly optimal w.r.t. SP efficient 
frontier 
 
 
 
 
 
 
 
 

3.4. UNCERTAINTY SET DESIGN BASED ON RISK MEASURES 57

tion of this chance constraint would simply takes the form

maximize µ
T
x

subject to r
T
x � 0 , 8 r 2 U

nX

i=1

xi = 1

x � 0 ,

for some well calibrated set U . Whether the set U be an ellipsoidal set, a budgeted
uncertainty set, or even a CVaR uncertainty set, each have a way of controlling how
conservative (i.e. robust) the solution will be: �, �, or ↵ respectively.

The figure below (originally as Figure 1.1 in [12]) presents the Pareto frontier of
performance pairs, i.e. (expected return, probability of loss) achieved by the stochastic
programming model and its three robust approximations.

Mean return vs. Loss probability Pareto frontier
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Fig. 1.1 (Top) Expected return-loss probability frontier for RO-based formulations and exact sto-
chastic formulation; numbers are time (sec.) for solving each stochastic program. (Bottom)
Frontier for model with random perturbations bounded by 1% (left) and 2% (right).

conservative. In general, solving the stochastic formulation exactly is di�cult, which
is not surprising given its NP-hardness. Though a few of the instances at extreme
return levels are solved in only a few seconds, several of the instances require well over
an hour to solve, and the worst case requires over 2.1 hours to solve. The total time
to solve these 8 instances is about 5.2 hours; by contrast, solving the 600 RO-based
instances takes a bit under 10 minutes in total, or about one second per instance.

The bottom two panels of Figure 1.1 show results for the computed portfolios
under the same return model but with random perturbations. Specifically, we per-
turb each of the N ⇥ n return values by a random number uniformly distributed on
[.99, 1.01] in the bottom left figure and [.98, 1.02] in the bottom right figure. At the 1%
perturbation level, the gap in performance between the models is reduced, and there
are regions in which each of the models is best as well as worst. The model based on
R

D is least a�ected by the perturbation; its frontier is essentially unchanged. The
models based on R

Q and R
T are more significantly a�ected, perhaps with the e�ect

on R
T being a bit more pronounced. Finally, the stochastic formulation’s solutions

are the most sensitive of the bunch: though the SP solution is a winner in one of the
8 cases, it is worse o� than the others in several of the other cases, and the increase
in loss probability from the original model is as large as 5–6% for the SP solutions.

At the 2% level, the results are even more pronounced: here, the SP solutions
are always outperformed by one of the robust approaches, and the solutions based
on R

D are relatively una�ected by the noise. The other two robust approaches are

0

0.004 0.006 0.008 0.010 0.012
Expected monthly return

Robust ellipsoidal 
Robust budgeted 
Robust CVaR 
Chance constraineds

s

s

s

s

s
s

s

Note that in comparison on average the solutions of RO methods were obtained in 1 second.

3.4 Uncertainty Set Design based on Risk Mea-

sures

In [2], Artzner et al. introduce for the first time the notion of a family of risk measures
that are rational to employ. He indicates that such measures ⇢ should satisfy the
following properties when defined in terms of an uncertain income:

• Translation invariance : the risk of a position to which we add a guaranteed
income is reduced by the amount of the income, i.e. ⇢(Y + c) = ⇢(Y )� c when c

is certain
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3.2 Ambiguous Chance Constraint Approximation

It appears to be in [1] that the authors identify for the first time a connection between ro-
bust constraints and a form of chance constraint referred as “ambiguous chance constraint”.
Indeed, one of the main strengths of robust optimization is the idea that the approach is
distribution-free. For this reason, it could be more interesting to relate the robust opti-
mization formulation to a form of chance constraint that is distribution-free. Namely, many
authors have considered the following assumption.

Assumption 3.4. : Let Z 2 Rm be a random vector for which the distribution is not known,
yet what is known of the random vector is that all Zi’s are independent from each other and
that each of them is symmetrically distributed on the interval [�1, 1].

Theorem 3.5. : Given some ✏ > 0 and some random vector Z that satisfies assumption 3.4,
one has the guarantee that any x satisfying the robust constraint

a(z)T
x  b(z) , 8 z 2 Zell(�) ,

where
Zell(�) := {z 2 Rm | zi 2 [�1, 1], , kzk2  �}

and � :=
p

2 ln(1/✏) is guaranteed to satisfy the following chance constraint

P(a(Z)T
x  b(Z)) � 1 � ✏ .

even though the distribution of Z is not known.

In order to prove this theorem one must first be aware of the following lemma.

Lemma 3.6. : Let Z 2 Rm be a random vector with independent symmetrically distributed
entries on the interval [�1, 1] and let a 2 Rm be such that kak2 = 1, then for every � > 0,
one has

P(aT
Z > �)  exp(��

2
/2) .

Proof. The proof goes as follows. Since exp(·) is a strictly increasing function, one can state
that

P(aT
Z > �)  P(aT

Z � �) = P (�a
T
Z � �

2) = P (exp(�a
T
Z) � exp(�2)) .

But then, by Markov inequality which states that P(Y � ↵)  E [Y ]/↵ if Y is a positive
random variable, we can infer that

P(exp(�a
T
Z) � exp(�2))  E [exp(�a

T
z)]

exp(�2)
= exp(��

2)
Y

j

E [exp(�ajZj)] ,

where the last inequality follows from the fact that the Zj are independent. The question is
now to confirm that E [exp(�ajZj)]  exp(�2

a
2
j/2). If it was the case than we would know

that

exp(��
2)

Y

j

E [exp(�ajZj)]  exp(��
2) exp(�2

X

j

a
2
j/2)

= exp(��
2 + �

2
/2) = exp(��

2
/2) ,
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3.2 Ambiguous Chance Constraint Approximation

It appears to be in [12] that the authors identify for the first time a connection between
robust constraints and a form of chance constraint referred as “ambiguous chance
constraint”. Indeed, one of the main strengths of robust optimization is the idea that
the approach is distribution-free. For this reason, it could be more interesting to relate
the robust optimization formulation to a form of chance constraint that is distribution-
free. Namely, many authors have considered the following assumption.

Assumption 3.4. : Let Z 2 Rm be a random vector for which the distribution is not
known, yet what is known of the random vector is that all Zi’s are independent from
each other and that each of them is symmetrically distributed on the interval [�1, 1].

Theorem 3.5. : Given some ✏ > 0 and some random vector Z that satisfies assump-
tion 3.4, one has the guarantee that any x satisfying the robust constraint

a(z)Tx  b(z) , 8 z 2 Zell(�) ,

where

Zell(�) := {z 2 Rm
| kzk2  �}

and � :=
p
2 ln(1/✏) is guaranteed to satisfy the following chance constraint

P(a(Z)Tx  b(Z)) � 1 � ✏ .

even though the distribution of Z is not known.

In order to prove this theorem one must first be aware of the following lemma.

Lemma 3.6. : Let Z 2 Rm be a random vector with independent symmetrically dis-
tributed entries on the interval [�1, 1] and let a 2 Rm be such that kak2 = 1, then for
every � > 0, one has

P(aT
Z > �)  exp(��

2
/2) .

Proof. The proof goes as follows. Since exp(·) is a strictly increasing function, one can
state that

P(aT
Z > �)  P(aT

Z � �) = P (�aT
Z � �

2) = P (exp(�aT
Z) � exp(�2)) .

But then, by Markov inequality which states that P(Y � ↵)  E [Y ]/↵ if Y is a positive
random variable, we can infer that

P(exp(�aT
Z) � exp(�2)) 

E [exp(�aT
z)]

exp(�2)
= exp(��

2)
Y

j

E [exp(�ajZj)] ,
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where v 2 Rn is an auxiliary decision vector while a(x) and b(x) are defined as in the
proof of theorem 3.5. This being said, let the pair (x⇤

, v
⇤) be feasible with respect to

this reformulated constraint. Then we must have that for any z 2 [�1, 1]m that make
the constraint a(x⇤)T z  b(x⇤) infeasible, the following also holds:

a(x⇤)T z > b(x⇤) ) (a(x⇤) � v
⇤)T z + v

⇤T
z > b(x⇤)

) kv
⇤
k1 + (a(x⇤) � v

⇤)T z > b(x⇤) since kzk1  1

) b(x⇤) � �ka(x⇤) � v
⇤
k2 + (a(x⇤) � v

⇤)T z > b(x⇤) since (x⇤
, v

⇤) satisfy (3.2)

) (a(x⇤) � v
⇤)T z > �ka(x⇤) � v

⇤
k2 .

This can directly be used to establish that

P(a(x⇤)TZ > b(x⇤))  P((a(x⇤) � v
⇤)T z > �ka(x⇤) � v

⇤
k2)

 P
✓

a(x⇤) � v
⇤

ka(x⇤) � v⇤k2
Z > �

◆
 exp(��

2
/2) ,

or is trivially bounded above by zero when a(x⇤) = v
⇤. The rest of the proof follows

easily. ⇤
Finally, making use of the above corollary, we present an analogous result for the

budgeted uncertainty set which possibly contributed to its rise in popularity given
that the reformulation associated to this set preserves the structural complexity of the
constraint (i.e. a linear constraint is replaced with a set of linear constraints instead
of a second order cone constraint).

Corollary 3.8. : Given some ✏ > 0 and some random vector Z that satisfies assump-
tion 3.4, one has the guarantee that any x satisfying the robust constraint

a(z)Tx  b(z) , 8 z 2 Zbudg(�) ,

where
Zbudg(�) := {z 2 Rm

| zi 2 [�1, 1], kzk1  �}

and � :=
p
2m ln(1/✏) is guaranteed to satisfy the following chance constraint

P(a(Z)Tx  b(Z)) � 1 � ✏ .

even though the distribution of Z is not known.

Proof. This can be straightforwardly obtained by considering that a solution x
⇤ that

satisfies the robust constraint with budgeted uncertainty set Zbudg(�), also satisfies the
robust constraint with the uncertainty set Zell\box(�/

p
m). Hence, theorem 3.7 can be

applied to indicate that the guarantee is provided as long as �/
p
m =

p
2 ln(1/✏). ⇤

Note that in [14], the authors propose two other bounds methods for obtaining
a smaller value for � while preserving the same probabilistic guarantees. Since the
motivating arguments are a little more sophisticated, we leave to the reader to go read
the details if he is curious. One can also find in chapter 2.2 of [8] a number of alternative
hypothesis that can be made about the distribution in order for Zell(�), Zell\box(�),
and Zbudg(�) to provide safe approximations of the ambiguous chance constraint.



Definition of Coherent Risk Measures

CHAPTER 3. DATA-DRIVEN UNCERTAINTY SET DESIGN 46

set, or even a CVaR uncertainty set, each have a way of controlling how conservative (i.e.
robust) the solution will be: �, �, or ↵ respectively.

The figure below (originally as Figure 1.1 in [10]) presents the Pareto frontier of perfor-
mance pairs, i.e. (expected return, probability of loss) achieved by the stochastic program-
ming model and its three robust approximations.

Mean return vs. Loss probability Pareto frontier
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Fig. 1.1 (Top) Expected return-loss probability frontier for RO-based formulations and exact sto-
chastic formulation; numbers are time (sec.) for solving each stochastic program. (Bottom)
Frontier for model with random perturbations bounded by 1% (left) and 2% (right).

conservative. In general, solving the stochastic formulation exactly is di�cult, which
is not surprising given its NP-hardness. Though a few of the instances at extreme
return levels are solved in only a few seconds, several of the instances require well over
an hour to solve, and the worst case requires over 2.1 hours to solve. The total time
to solve these 8 instances is about 5.2 hours; by contrast, solving the 600 RO-based
instances takes a bit under 10 minutes in total, or about one second per instance.

The bottom two panels of Figure 1.1 show results for the computed portfolios
under the same return model but with random perturbations. Specifically, we per-
turb each of the N ⇥ n return values by a random number uniformly distributed on
[.99, 1.01] in the bottom left figure and [.98, 1.02] in the bottom right figure. At the 1%
perturbation level, the gap in performance between the models is reduced, and there
are regions in which each of the models is best as well as worst. The model based on
RD is least a↵ected by the perturbation; its frontier is essentially unchanged. The
models based on RQ and RT are more significantly a↵ected, perhaps with the e↵ect
on RT being a bit more pronounced. Finally, the stochastic formulation’s solutions
are the most sensitive of the bunch: though the SP solution is a winner in one of the
8 cases, it is worse o↵ than the others in several of the other cases, and the increase
in loss probability from the original model is as large as 5–6% for the SP solutions.

At the 2% level, the results are even more pronounced: here, the SP solutions
are always outperformed by one of the robust approaches, and the solutions based
on RD are relatively una↵ected by the noise. The other two robust approaches are
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Note that in comparison on average the solutions of RO methods were obtained in 1 second.

3.4 Uncertainty Set Design based on Risk Measures

In [2], Artzner et al. introduce for the first time the notion of a family of risk measures
that are rational to employ. He indicates that such measures ⇢ should satisfy the following
properties when defined in terms of an uncertain income:

• Translation invariance : the risk of a position to which we add a guaranteed income is
reduced by the amount of the income, i.e. ⇢(Y + c) = ⇢(Y ) � c when c is certain

• Subadditivity: the risk of the sum of risky positions should be lower than the sum of
the risks, i.e. ⇢(X + Y )  ⇢(X) + ⇢(Y )

• Positive homogeneity : if the consequences of a risky position are scaled by the same
positive amount � � 0, then the risk should be scaled by the same amount, i.e. ⇢(�Y ) =
�⇢(Y )

• Monotonicity: A risky position that is guaranteed to return larger income than another
risky position should be considered less risky, i.e. X � Y ) ⇢(X)  ⇢(Y ).

• Relevance : if a risky position has the potential of leading to a loss, then the risk should
be strictly positive, i.e. X  0&X 6= 0 ) ⇢(X) > 0.
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Based on these five axioms, the authors are able to demonstrate that the risk measure must
be representable in the following form:

⇢(Y ) := sup
F2D

E F [�Y ] ,

where D is a set of distributions for the random variable X.
The family of coherent risk measure has caught a lot of attention since the financial

crisis of 2008 as it was recognize that value at risk did not satisfy all of the mentioned
axioms. Instead, there is now many arguments promoting the use of an alternative method
for quantifying risk known as Conditional Value at Risk (CVaR). Intuitively, this new measure
evaluates the expected value of the revenues under the scenarios that leads to the p% worst
outcomes. For this reason, it obviously always overestimates risks when compared to the
VaR, namely that CVaR(Y ) � VaR(Y ). It is known to be a coherent risk measure and is
now considered by many to be more reasonable to use than the VaR (see in particular a
discussion on this topic in[4]). These considerations have led to an increase use of the CVaR
in many disciplines such as health care, supply chain, network design, vehicle routing, energy,
etc.

In [11], the authors actually identified an interesting connection between coherent risk
measures and robust linear constraint. They actually established that there is a one to one
correspondence between robust linear constraints and constraint on the risk measured by a
coherent risk measure. In particular, they provide arguments for the following theorem.

Theorem 3.8. : Given a coherent risk measure ⇢(·), there always exists a convex uncertainty
Z such that the no risk constraint

⇢(b(Z) � a(Z)T
x)  0

is equivalent to imposing the robust constraint

a(z)T
x  b(z) , 8 z 2 Z; .

The converse is also true.

Proof. Given any coherent risk measure ⇢(·), we have mentioned that the representation the-
orem for this family of risk measure guarantees that the no risk constraint can be represented
as

sup
F2D

E F [�(b(Z) � a(Z)T
x)  0 ,

for some set of distribution D. Since the revenue expression is a linear function of the random
vector Z, one can obtain the following equivalent constraint

sup
F2D

⇥
a(E F [Z])T

b(E F [Z])
⇤ 

x

�1

�
 0 .

This constraint can be reformulated in simpler terms as

⇥
a(z)T

b(z)
⇤ 

x

�1

�
 0 , 8 z 2 Z ,
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Based on these five axioms, the authors are able to demonstrate that the risk measure
must be representable in the following form:

⇢(Y ) := sup
F2D

E F [�Y ] ,

where D is a set of distributions for the random variable Y .
The family of coherent risk measure has caught a lot of attention since the financial

crisis of 2008 as it was recognize that value at risk did not satisfy all of the mentioned
axioms. Instead, there is now many arguments promoting the use of an alternative
method for quantifying risk known as Conditional Value at Risk (CVaR). Intuitively,
this new measure evaluates the expected value of the revenues under the scenarios that
leads to the p% worst outcomes. For this reason, it obviously always overestimates risks
when compared to the VaR, namely that CVaR1�✏(Y ) � VaR1�✏(Y ). It is known to be
a coherent risk measure and is now considered by many to be more reasonable to use
than the VaR (see in particular a discussion on this topic in[3]). These considerations
have led to an increase use of the CVaR in many disciplines such as health care, supply
chain, network design, vehicle routing, energy, etc.

In [13], the authors actually identified an interesting connection between coherent
risk measures and robust linear constraint. They actually established that there is a
one to one correspondence between robust linear constraints and constraint on the risk
measured by a coherent risk measure. In particular, they provide arguments for the
following theorem.

Theorem 3.9. : Given a coherent risk measure ⇢(·), there always exists a convex
uncertainty set Z such that the no risk constraint

⇢(b(Z) � a(Z)Tx)  0

is equivalent to imposing the robust constraint

a(z)Tx  b(z) , 8 z 2 Z; .

The converse is also true.

Proof. Given any coherent risk measure ⇢(·), we have mentioned that the representation
theorem for this family of risk measure guarantees that the no risk constraint can be
represented as

sup
F2D

E F [�(b(Z) � a(Z)Tx)]  0 ,

for some set of distribution D. Since the revenue expression is a linear function of the
random vector Z, one can obtain the following equivalent constraint

sup
F2D

⇥
a(E F [Z])T b(E F [Z])

⇤ 
x

�1

�
 0 .
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3.4.1 The Conditional Value at Risk Measure

We now take a closer look at the conditional value at risk measure and demonstrate
how it is related to the CVaR uncertainty set presented in chapter 2.

Mathematically, the most popular representation for the CVaR measure appeared in
[34] and takes the following form when the random variable Y represents an uncertain
revenue

CVaR1�✏(Y ) := inf
t

t+
1

✏
E [max(0,�Y � t)] .

Intuitively, it is worth knowing that at optimum the value t⇤ will captures the value
at risk for the given uncertain revenue so that

CVaR(Y ) = VaR(Y ) + (1/✏)E [max(0,�Y � VaR1�✏(Y )]

= VaR1�✏(Y ) + E [�Y � VaR1�✏(Y ) | � Y � VaR1�✏(Y )] .

It is perhaps surprising that the most famous representation for CVaR does not
take the shape of ⇢(Y ) := sup

F2D E F [�Y ]. The reason is potentially that the above
representation is more intuitive. In any case, let’s identify how the CVaR measure can
be represented in the form ⇢(Y ) := sup

F2D E F [�Y ]. When the distribution is discrete,
this can actually be obtained by employing linear programming duality. In particular,
CVaR can be evaluated by solving the following linear program:

minimize
t,s

t+
1

✏

KX

i=1

pisi

subject to si � �yi � t , 8 i = 1, . . . , K

si � 0 , 8 i = 1, . . . , K ,

where s 2 RK while pi 2 R and yi 2 R represents respectively the probability and
realized value of Y under each scenario i = 1, . . . , K. Applying duality we obtain the
following equivalent linear program:

maximize
�

�
T
y

subject to � � 0

�i  pi/✏ , 8 i = 1, . . . , K
KX

i=1

�i = 1 .

Hence, it takes the shape of sup
F2D E F [�Y ] where D := {F | P(Y = yi)  pi/✏ 8 i =

1, . . . , K,
P

K

i=1
P(Y = yi) = 1}.

Following theorem 3.9, we are now aware that given a random vector Z with discrete
distribution described by {pi, z̄i}

K

i=1
, and any linear revenue function b�a(Z)Tx, using

the set
Z

0 := {z 2 Rm
| 9F 2 D, z = E F [Z]} ,

95% VaR =  95th percentile =-7,5

Conditional VaR 95% = -6

Return distribution

Mean = 12,28

Median = 12,81
Mode = 13,58

Range = [0, 14,8]



The Case of Conditional 
Value-at-Risk

Use Theorem 3.9 to show that when the distribution of z is  

the bounded CVaR constraint 

can be equivalently reformulated as the following robust constraint  

 
where 

 

CV aR1�✏(b(Z)� a(Z)Tx)  0
<latexit sha1_base64="IfLeY57JwGDSjGQuucr6DWQj/y4="></latexit>

a(z)Tx  b(z), 8 z 2 ZCVaR(✏)
<latexit sha1_base64="4Yr3CFI3nd06gG3GgBWEh7S/VtI="></latexit>

P(Z = z̄i) = pi, 8 i = 1, . . . ,K
<latexit sha1_base64="iCCCdp6oLYuVeuMfGNOGWiscNFo="></latexit>

ZCVaR(✏) = {z 2 Rm | 9q 2 RK , q � 0, qi  pi/✏,
KX

i=1

qi = 1, z =
KX

i=1

z̄iqi}
<latexit sha1_base64="W1zcu+P4YnKU4aP+/kBS9JFmtJI="></latexit>


