Chapter 3:

Data-driven Uncertainty Set Design



Chance constraints

 Charnes and Cooper introduced in 1959, a concept now referred as
chance constraint. Namely, given a distribution F for a random vector Z
and a tolerance € > 0.
One can impose that

Pla(Z)'z <b(Z))>1—¢

* This also gives rise to the notion of Value at Risk for a return

VaRi_(c(Z2)' 2 +d(Z)) := —sup{y € R|P(c(Z) ' x +d(Z) > y) > 1 — €}

e Both involve veritying whether a constraint is satisfied with high probability

* E.g. minimizing the value at risk of a portfolio of stocks

min VaR;_.(r' x)
r:x>0,> . x;=1



SOCP reformulation for
normal distribution

* The three following constraints are equivalent when the
random return vector « r » is normally distributed N (u, >)

(1) Prlz>y)>1—c¢

2) ple—o 11 —e)VaTSe >y
@) rTe >y, Vr: |27 V20r —p)|| < d 11 —¢)

* For general distribution, veritying whether the chance
constraint is satisfied for a fixed « x » is NP-hard.



Robust optimization as an
approximation to chance constraints

Theorem 3.2. : Given some € > 0 and some random vector Z distributed according
to F', let Z be a set such that

PZeZ)>1—¢,
then one has the guarantee that any x satisfying the robust constraint
a(z)'x <b(z),Vz€ Z,
will also satisfy the following chance constraint

Pla(Z) 'z <b(Z))>1—c¢.

Note that the converse Is not true so that the two constraints are
generally not equivalent.



Robust optimization as an
approximation to chance constraints

Theorem 3.2. : Given some € > 0 and some random vector Z distributed according
to I, let Z be a set such that

PZeZ)>1—¢,

then one has the gquarantee that any x satisfying the robust constraint

r

In particular, in the example:

Piriz>y)>1—¢

if T° is normally distributed and an ellipsoidal set is used one would
get the following uncertainty set

1o >y, ¥ 272 - )] < PG (1—e) £ 07 (1 —¢)




How RO approximates chance
constraints

Let m =2, e=5%,and X =1, ,

W U(2.445)i.e. 95% conf. region

®1(1—¢) = 1.645, \/Fx_%l(l —€) = 2.445
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Implication for LP-RC

Corollary 3.3. : Giwen some € > 0 and some random vector Z distributed according
to F', let Z be a set such that

P(ZeZ)>1—c¢,

then the LP-RC optimization problem (2.1) is a |conservative approrimation |

stochastic program o

minimize VaRl_e(ZTng + qOTZ + pépﬂ? +10)

X

subject to IP’(ZTPij +pjrx < q;‘.FZ +r;)>1—€,Vi=1,..,J,

where VaRi_.(+) is as defined in definition 3.1. Specifically, by conservative approxima-
tion we mean that an optimal solution to the LP-RC problem will be feasible according
to the above stochastic program where it will achieve an objective value that is lower
than what was established by the LP-RC optimization model.



Example: Portfolio with
minimum Var

You are given a set of historical monthly returns of 10 stocks for year 2000 - 2009, and are
asked to approximate the following “value-at-risk” problem:

minimize —
T,y n
i I — =1 x>0
subject to  P(riz>y)>1—c¢ > @ >0,
=1

where ¢ = 5% and the distribution of r is considered as the empirical distribution of the
monthly stock returns over the whole period of 2000-2009, in other words, any monthly
return vector observed in this period is as likely to occur.

Our answer: Let’s consider the following approximation to the value-at-risk problem de-
scribed above:

minimize —
T,y )
subject to TT:UZy,VTGZ/{ sz:l x>0,
=1
where we will use the uncertainty set:

U(ro, ) == {r e RV [[lr —roll2 <7},
How would you calibrate « rg » and V' ?



Example: Portfolio with
minimum VaR (Google Colab)

e \WWe center the set at the [ ] r0=np.mean(Rs,axis=1)
mean

10 —
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e \We choose a radius such ;
that the ball includes 95%
of the samples

o
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* |n this example, the radius ends up being 0,75 while
with a normal distribution we would use 0,24


https://colab.research.google.com/drive/1A-CUlLTE1VUoXj9-uO8nBAJYMUHPnIbc?usp=sharing

Example: Portfolio with
minimum VaR (Google Colab)

e [The robust
solution offers a
bound on 95%-
VaR of 21%

* |[n-sample, the
VaR Is 6.3%

e Qut-of-sample,
the VaR 1s 6.6%

[

]

n = Rs.shape[0]

#Create model

model = ro.Model( 'RobustPorfolioVaR')
# Define variables

x=model.dvar(n)

y=model.dvar(1l)

# Define uncertain parameters
r=model.rvar(n)

UncertaintySet=(rso.norm(r-r0,2)<=gamma)

model.min(-y)
model.st((r@x>=y).forall(UncertaintySet))
model.st(sum(x)==1)

model.st (x<=1)

model.st (x>=0)

model.solve(my solver)


https://colab.research.google.com/drive/1A-CUlLTE1VUoXj9-uO8nBAJYMUHPnIbc?usp=sharing

Risk-return tradeoft
approximation

* |n practice a decision maker is interested in the
possible tradeoffs between risk and return

* |n portfolio selection problem, this can be done
with stochastic prog. or robust optimization

Stochastic Prog. Robust optimization

. T ..
maximize [ |[r’ x| maximize  plw

subject to IP’(TT:C >0)>1—c¢ subject to e > 0,Vrell)

1=1 1=1




Risk-return tradeoft
approximation

* |n Bertsimas et al. 2011, the authors show that while RO
only requires a fraction of computations needed by SP, it
identifies solutions that are nearly optimal w.r.t. SP efficient
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RO as approximation to
ampiguous chance constraints

Assumption 3.4. : Let Z € R™ be a random vector for which the distribution is not known,
yet what is known of the random vector is that all Z;’s are independent from each other and
that each of them is symmetrically distributed on the interval [—1, 1].

Theorem 3.5. : Given some € > 0 and some random vector Z that satisfies assump-
tion 3.4, one has the gquarantee that any x satisfying the robust constraint

a(z)'z <b(z),Vz € Zulv),

where
Za(y) = {2z € R"[||z][2 <~}

and y := /2In(1/€) is guaranteed to satisfy the following chance constraint

Pa(Z) Tz <b(Z))>1—c¢.

even though the distribution of Z is not known.



A corollary result for the
budgeted uncertainty set

Corollary 3.8. : Gwen some € > 0 and some random vector Z that satisfies assump-
tion 3.4, one has the guarantee that any x satisfying the robust constraint

a(2)'x <b(2), Vz € Zyug(l)

where
ZbUdQ(F) F= {Z 6 Rm ‘ Zi E [_17 1]7 HZH1 S F}

and T := +/2m1In(1/€) is guaranteed to satisfy the following chance constraint
Pla(Z) 'z <b(Z)>1—¢€.

even though the distribution of Z is not known.




Definition of Coherent Risk Measures

In [2], Artzner et al. introduce for the first time the notion of a family of risk measures
that are rational to employ. He indicates that such measures p should satisfy the following
properties when defined in terms of an uncertain income:

e Translation invariance : the risk of a position to which we add a guaranteed income is
reduced by the amount of the income, i.e. p(Y 4 ¢) = p(Y) — ¢ when c is certain

e Subadditivity: the risk of the sum of risky positions should be lower than the sum of
the risks, i.e. p(X +Y) < p(X) + p(Y)

e Positive homogeneity : if the consequences of a risky position are scaled by the same
positive amount A > 0, then the risk should be scaled by the same amount, i.e. p(AY) =

Ap(Y)

e Monotonicity: A risky position that is guaranteed to return larger income than another
risky position should be considered less risky, i.e. X > Y = p(X) < p(Y).

e Relevance : if a risky position has the potential of leading to a loss, then the risk should
be strictly positive, i.e. X <0&X # 0= p(X) > 0.

Based on these five axioms, the authors are able to demonstrate that the risk measure must
be representable in the following form:

p(Y) :=sup Ep[-Y],
FeD



RO as imposing a bound on
a coherent risk measure

Theorem 3.9. : Given a coherent risk measure p(-), there always exists a convex
uncertainty set Z such that the no risk constraint

p(0(Z) —a(Z) x) <0
18 equivalent to tmposing the robust constraint

a(z)'x <b(z),Vz€Z;.

The converse 1s also true.



The Case of Conditional
Value-at-Risk

Mathematically, the most popular representation for the CVaR measure appeared in
134] and takes the following form when the random variable Y represents an uncertain
revenue

1
CVaR,_(Y) := irt1ft + —FE [max(0, =Y —t)] .
€

Intuitively, it is worth knowing that at optimum the value t* will captures the value
at risk for the given uncertain revenue so that

1

Return distribution

..::’7' 1 Range = [0, 14,8]

O Mean = 12,28

o .

) Median = 12,81

E - Conditional VaR 95% = -6 Mode = 13,58

|

95% VaR = 95t percentile =-7,5

|

I |
0,00 3,00 6,00 9,00 12,00 15,00



The Case of Conditional
Value-at-Risk

Use Theorem 3.9 to show that when the distribution of z IS
IP)(Z:ZL) :pi,\V/i: 1,...,K

the bounded CVaR constraint
CVaRi_(b(Z) —a(Z)'2z) <0
can be equivalently reformulated as the following robust constraint
a(z)' 'z < b(2), V2 € Zavar(€)

where

K

K
Zovar(e) = {z € R™ |[Ig e R®, ¢ >0, ¢; < pi/e, Zq@' =1, 2= Zzz'%:}
i—1 i—1



